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Abstract: With the development of various location-based social networks (LSBNs), personalized
point-of-interest (POI) recommendations have become a recent research hotspot. Current recommen-
dation methods tend to mine user preferences from their historical check-in records but overlook
interest deviations caused by real-time geographic environments and immediate interests present
in the records, failing to meet users’ real-time and accurate needs. Therefore, this paper proposes a
composite preference-based recommendation model (CPRM) for personalized POI recommendation.
This method first extracts multi-factor contextual features, constructs a dual-layer attention network
(DLAN) to capture long and short-term preferences, combines real-time geographic scenarios to
uncover user immediate preferences, and then weights and fuses these three types of preferences
to generate user composite preferences. Finally, a prediction function is employed to obtain the
Top-N recommendation list. The experiments on two classic datasets, Foursquare and Gowalla,
affirm the effectiveness of the model presented in this paper and offer a novel approach for providing
personalized POI recommendations to users.

Keywords: POI recommendation; immediate preference; context information; attention mechanism

1. Introduction

In recent years, spurred by the rapid advancement of the Internet and mobile com-
munications, personalized point-of-interest (POI) recommendation technology within
location-based social networks (LBSNs) has undergone remarkable development [1–3]. POI
suggestion, one of the primary services offered by LBSNs, enables users to post check-ins
on LBSNs like Foursquare, Gowalla, etc. and to share information like their own real-time
geographic location and opinion remarks. The goal is to enhance user experience and
merchant service quality while assisting users in finding relevant businesses and attrac-
tions. A current research topic in the recommendation field is how to fully utilize the useful
information in a user’s past check-in data, assess the user’s own behavior and preferences,
and then select POIs that may be of interest to the user.

Recommendation methods can be categorized into eight categories such as collabora-
tive filtering, content-based filtering, hybrid filtering, and context-aware recommendation.
Context-aware POI recommendation methods predict user-matching POIs based on his-
torical behavior and current scenarios. Unlike traditional methods, these provide highly
personalized, real-time POI recommendations, enhancing user satisfaction and experi-
ence. In the nascent stages of research, collaborative filtering (CF) methods [4,5] were
predominantly employed. However, these methods grappled with several critical issues,
including data sparsity, limited model generalization capabilities, and other challenges.
To identify user preferences more accurately, the literature [6–8] presented techniques
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including matrix factorization (MF), logistic regression (LR), and factorization machines
(FM) capable of feature combination. Models like recurrent neural networks (RNN) [9,10],
long short-term memory (LSTM) [11,12], and gated recurrent unit (GRU) [13,14] have
tapped into their expressive power and adaptable structures thanks to the development
of deep learning techniques to enhance the caliber of personalized recommendation ser-
vices. The aforementioned techniques all work well at mining user preferences, but they
all have trouble capturing the user’s attention in a precise manner, making it difficult to
gauge the user’s level of interest in various POIs during the suggestion process. The litera-
ture [15–19] presents an attention method to dynamically modify the weights of various
pieces of information in order to better mine user preferences and enhance the precision
of recommendations [20] to overcome this issue. Furthermore, researchers have explored
the integration of self-attention mechanisms into POI recommendation models [21–24].
Nevertheless, contemporary mainstream next POI recommendation methodologies still
exhibit certain constraints: they disregard users’ interest transitions influenced by their
geographic surroundings. The majority of research in this domain predominantly relies on
users’ historical check-in data to assess their enduring and fleeting personal preferences.
This approach neglects the immediate preferences that arise from the influence of the
geographic environment prior to check-in events, thereby failing to accurately capture the
real-time evolution of user preferences and to fulfill the real-time precision requirements of
users. Immediate preferences become evident when users find themselves within areas
of particular interest, such as densely populated commercial zones, culinary districts, or
tourist attractions. In such instances, users may opt for choices that diverge from their
established long-term preference patterns.

To address the aforementioned challenges, this research uses a composite preference-
based recommendation model (CPRM) that integrates users’ comprehensive preferences.
Firstly, we extract multifaceted contextual information from users’ historical check-in data
and employ a dual-layer attention network (DLAN) to uncover both their short-term and
long-term preferences. Subsequently, we utilize long-term preferences to filter out check-in
points from users’ extended sequences that exhibit lower relevance and similarity to the
surrounding geographical context. Simultaneously, we actively discern the user’s current
location to discern their instantaneous preferences. Finally, these three categories of pref-
erences are amalgamated into a composite preference model through weighted fusion.
The user composite preference is then used to calculate scores with the target points of
interest, culminating in the generation of the POI recommendation sequence. In contrast
to conventional POI recommendation techniques, the CPRM model introduces a signif-
icant enhancement by incorporating the real-time geographical context and composite
preferences into the process of POI selection during a user’s mobile travel journey. This in-
novative approach heralds the advent of a novel recommendation model and methodology,
specifically tailored to offer user-initiated, personalized POI recommendation services.

The major contributions of this paper are as follows:

• This research offers a contextual information extraction approach for user historical
check-in data since user check-in data comprise a range of information, such as
temporal, geographical, and spatial–temporal intervals. Multiple scales are used to
extract multi-factor contextual data, which are then used as data support for mining
user composite preferences.

• This research offers a DLAN network for extracting user preferences. The issue
that users will be impacted by the geographic scenario and have drifting interests is
resolved by extracting long- and short-term preferences, using long-term preferences
to filter the historical check-in data, and combining them with the current geographic
environment to mine immediate preferences.

• This research proposes CPRM for personalizing next POI recommendations. It com-
bines three different forms of preferences to represent the user composite preferences
and then calculates scores in relation to the target POIs to provide a Top-N sugges-
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tion sequence. It solves the problem that the existing methods cannot fully meet the
real-time and accuracy rate of the user’s needs.

The remainder of the essay is structured as follows. The research reviews the work
related to POI recommendations separately in Section 2. Section 3 presents the proposed
method and describes the process of using user composite preferences for POI recom-
mendation. The dataset used, the evaluation measures, and the experiment design are all
described in Section 4. Finally, Section 5 presents the conclusions.

2. Related Works

In this section, research work on traditional POI recommendation, deep learning-
based POI recommendation, and context-aware POI recommendation is presented in order
(Table 1).

Table 1. Summary of literature related to POI recommendations.

Reference Proposed
Approach

Affiliated
Methods Advantage Limitations

[4,5]

Traditional POI
recommendation

methods

CF Wide applicability Data sparsity and cold start
issues

[6,24] MF Focuses on implicit
characteristics of users and POIs

Contextual information is
not considered

[25,26] LR Learns feature weights via linear
combination

Difficult to process
high-dimensional data

[27] FM Captures high-dimensional
features

Not suitable for sequence
modeling

[28] Hybrid Combines the benefits of
multiple referral methods

Requires a lot of training
data

[9,10,29,30]
Deep learning

based POI
recommendation

n method

RNN Capturing long-term
dependence and mitigating the

disappearance of gradients

The importance of different
POIs cannot be

distinguished, and the
model is less interpretable

[11,12,31] LSTM

[13,14] GRU

[21–23,32] Attention Dynamic adjustment of weights
with higher interpretability

Contextual information is
not considered

[33]

Context Aware
Personalized POI

CF Integrates multiple contextual
information Data sparsity issues

[10,12,13]
Extended RNN

Integration of spatial–temporal
interval contextual information

User preferences are not
considered

[14,34,35]
Integrates a wide range of

contextual information and user
preferences

Only user long- and
short-term preferences are

considered[18,19] attention Dynamically adjusts weights

[36] LSTM Considers time-bound real-time
preferences

Failure to consider
geographic constraints

2.1. Traditional POI Recommendation Methods

In the traditional domain of POI recommendation methods, several approaches have
garnered prominence, including collaborative filtering, matrix decomposition, logistic re-
gression, factorization techniques, and mixed models. These methodologies play a pivotal
role in catering to the unique and personalized POI requirements of users. Collaborative
filtering (CF) stands as the predominant and widely adopted method in this realm. It lever-
ages the user–POI check-in matrix to anticipate the POIs that are most likely to capture user
interest, achieved through an analysis of user or item similarity. However, CF encounters a
significant challenge in practical applications, characterized by data sparsity. To address
this challenge, certain scholars have introduced the matrix factorization (MF) technique [6],
which places emphasis on the implicit attributes associated with both users and POIs. MF
predicts a user’s level of interest in an unvisited POI by disassembling the interaction
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matrix into the product of two lower-dimensional matrices. Additionally, other researchers
have advocated for the application of Logistic regression (LR) methodologies [25] to ac-
quire insights into the weightage of features pertaining to users and POIs. These features
are linearly amalgamated and subsequently mapped into probabilities, which signify the
likelihood of a user’s interest in a particular POI. It is worth noting that both MF and
LR offer interpretability and flexibility. However, they grapple with challenges related to
cold-start scenarios. Additionally, they encounter difficulties when attempting to capture
intricate nonlinear relationships and higher-order feature interactions. In response to these
limitations, some scholars have put forth factorization machine (FM) techniques tailored for
high-dimensional feature spaces [8,27]. Moreover, there have been endeavors to develop
hybrid models that harness the strengths of multiple recommendation techniques [26,28].
Nonetheless, it is essential to acknowledge that these approaches often necessitate sub-
stantial volumes of training data to estimate model parameters effectively. An inadequate
quantity of data, conversely, can result in suboptimal performance.

2.2. Deep Learning-Based POI Recommendation Methods

With the rapid advancements in big data and machine learning, deep learning-based
models and recommendation algorithms have seen widespread adoption in the realm
of POI recommendation. Deep learning models exhibit the remarkable capability to au-
tonomously discern high-level features within datasets, thus circumventing challenges
related to high-dimensional nonlinear fitting. In this context, RNN has emerged as a
formidable asset for handling contextual information within sequences, leading to the
development of variant models (e.g., LSTM and GRU). For instance, within the litera-
ture [29,30], RNN-based methodologies are introduced for the next POI recommendation
task. Furthering this, ML-POIRec [31] capitalizes on LSTM networks to capture users’
enduring static preferences, derived from historical check-in records. This approach ef-
fectively mitigates issues such as gradient vanishing. It is noteworthy that the gating
mechanism of GRU, a LSTM variant, is more streamlined in comparison. For example,
URPI-GRU [14] enhances the GRU model by incorporating reset gates, update gates, and
related components to harness contextual information effectively. However, it is imperative
to acknowledge that the aforementioned techniques, while adept at capturing long-term
dependencies gleaned from user sign-in records, treat all input information uniformly
and do not account for variations in user interest across different pieces of information.
While the methods mentioned above excel in capturing long-term dependencies from user
check-in records, they exhibit a uniform treatment of all input data and do not consider
that users may have varying degrees of interest in different types of information.

To enhance the precision of user preference mining and gain deeper insights into
user needs and behavioral patterns, certain researchers have introduced an attention
mechanism capable of dynamically adjusting weights, and the calculation process is shown
in Figure 1. For instance, AttnMove [32] addresses the issue of data sparsity by leveraging
the ATTENTION mechanism to capture both intra- and inter-trajectory relationships within
historical trajectories. Meanwhile, LSEST [18] employs TRANSFORMER-based preference
learning, encompassing both short-term and long-term considerations. This approach
adeptly captures temporal and spatial dependencies essential for next POI recommendation.
DRAN [37] and DisenPOI [38] combines disentangled representations with an attention
mechanism to learn the representations of users and locations of interest separately, to better
understand the interplay between users and points of interest, and to access complex user
preferences. MAHAN [39] presents a memory-enhanced hierarchical attentional network
designed to capture users’ evolving preferences over time. These studies collectively
demonstrate the superiority of the attention mechanism when compared to that of RNN
and its variants in recommendation tasks. Moreover, the integration of multilayer attention
mechanisms holds significant potential for enhancing recommendation performance.
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2.3. Context-Aware POI Recommendation Methods

Contextual information plays a pivotal role in augmenting the performance and
overall user experience within recommender systems [40]. This contextual information
encompasses diverse factors, including spatial attributes, temporal considerations, social
influences, and POI categories. According to the first law of geography [41], it is known
that the geospatial factor is an important factor to enhance the effectiveness of POI rec-
ommendation. The literature [42] uses a kernel density estimation model to obtain the
user’s geographic preference probability of the POI, and then weights to calculate the
user’s behavioral preference probability, thereby generating the top-k recommendation list.
As user travel patterns exhibit temporal fluctuations, numerous studies have introduced
temporal elements into their POI recommendation models. ST-RNN [10], for instance,
factors in both time and distance intervals between consecutive interactions. It seamlessly
integrates temporal and spatial contextual information into the RNN framework, subse-
quently leveraging transfer matrix fusion to predict locations effectively. Building upon the
advancements of ST-RNN, MST-RNN [34] utilizes the duration information and semantic
labeling information of the POIs in each layer of the neural network. STLSTM [12] adeptly
combines spatial–temporal context information with long short-term memory (LSTM)
models at each step, refining the accuracy of sequence predictions. MGRU [13] utilizes
context information like geographic distances and time intervals, seamlessly integrating
them with GRU to bolster sequence recommendation. DCARS [43] employs non-negative
matrix decomposition and the attention mechanism to excavate contextual information,
followed by the utilization of Bi-LSTM, GRU, and attention techniques to discern user
long- and short-term preferences. In addition, information such as social connections, user
reviews, and POI categories are often incorporated to enhance recommendation [14,35,44].
For instance, ContextSWRank [33] predicts user preferences in given contexts (e.g., time of
day and weather) based on geographic proximity and popularity contextual information,
which leads to recommendation results.

In recent years, some studies have combined attention mechanisms with contextual
information for modeling and achieved good results. For instance, LSPL [18] employs an
attention mechanism within a long-term preference extraction module to learn contextual
features from user check-in sequences. LSMA [19] analyzes spatial–temporal and POI
contextual information in user check-ins using a multi-layer attention mechanism. How-
ever, these methods primarily focus on long- and short-term preferences, overlooking the
significance of real-time preferences. RTPM [36] is a real-time preference mining model that
characterizes users’ real-time temporal preferences influenced by the public. It achieves this
by incorporating time transition vectors, acknowledging that users may undergo abrupt
preference changes within specific time intervals. However, this method only considers the
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constraining effect of time factors and does not consider the influence of geographic factors
on users’ real-time preferences.

Based on the above research, this paper comprehensively incorporates the geographic
environment and user instantaneous preferences alongside spatial–temporal and POI
contextual information derived from the user’s historical check-in data. It introduces
a two-layer attention mechanism to extract both the user’s long-term and short-term
preferences while integrating an extraction module for immediate preferences influenced
by the geographic environment. These three categories of preferences are then fused to
create a composite preference, enabling precise recommendations for the next POI.

3. Preliminaries

This section initially provides a summary of the pertinent notations employed by
the model along with their corresponding meanings (Table 2). Subsequently, it offers
definitions of certain terms and expounds upon the recommendation task.

Table 2. Summary of primary notations.

Notation Description

u, l User, POI
U, L The set of users and POIs

s Characteristic representation of ui at the check-in point
Spoi User check-in sequence

m, d, w, h Month, day, week, and hour
tpoi, gpoi Temporal and spatial context information

t_serpoi, g_serpoi Temporal and spatial sequence

∆Tpoi, ∆Gpoi User-personalized temporal and spatial unequal interval
matrix

N Sequence length
Gs Geographic scene information

Spoi(l), Spoi(d), Spoi(r) Long-term, short-term and immediate sequence
Epoi, Egs Check-in sequences and Gs-embedding matrix

prepoi(l), prepoi(d), prepoi(r) Long-term, short-term and immediate preference
representation

Assuming that U =
{

u1, u2, · · · u|U|
}

is the set of users and L =
{

l1, l2, · · · l|L|
}

is the
set of POIs, |U| and |L| denote the total number of users and POIs, respectively.

Definition 1. (POI). A POI is a geographic location comprising geographic longitude and latitude,
and an identifier, denoted as (l, lat, lng).

Definition 2. (Check-in Activity and Historical Check-in Tracks). A check-in behavior is a user ui
visiting POI li at a certain time, ti, denoted as si = (ui, li, ti). The historical check-in trajectory
is the set of POIs visited by user ui over a period of time, denoted as s = {s1, s2, · · · , sm} ={
(u1, l1, t1), (u2, l2, t2), · · · , (uj, lj, tj)

}
, and j is the number of check-in activities.

Definition 3. (Check-in sequence). After dividing the historical check-in trajectory using a fixed
length, we obtain the check-in sequence Spoi = {s1, s2, · · · , sN} for user ui, where N is the length of
the sequence.

Definition 4. (Temporal and spatial sequences). Generate the corresponding temporal sequence
t_serpoi and spatial sequence g_serpoi based on the user sequence.

Definition 5. (Geographic scene information). The scene type of the spatial location where user ui
is located is determined by the type of the POI with the largest proportion in the region.
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Problem 1. (POI recommendation). Predict the next most likely POI to be visited by the target
user in a real-time scenario, based on a given sequence of historical user check-ins.

4. Proposed Model

In this study, the CPRM model primarily consists of three components:

1. Multi-factor feature extraction and an embedding module, which includes extracting
multi-factor contextual feature information from a user’s historical check-in sequence
and completing the embedding representation.

2. A user composite preference modeling module, where the user’s own interest prefer-
ences are first aggregated through the two-layer attention network, and the interest
preferences for the target POIs are then captured to obtain the user’ long- and short-
term preference representations. Next, the user’s own preference expressions influ-
enced by geographic scenarios are aggregated to combine with the user’s real-time
spatial location to obtain the user’s immediate preference representations.

3. A recommended prediction module, where a prediction function is utilized to generate
POI suggestions following the weighted fusion of immediate, short-term, and long-
term preferences (the model structure is depicted in Figure 2).

Electronics 2023, 12, x FOR PEER REVIEW 7 of 25 
 

  ( ) ( ) ( ) 1 2 1 1 1 2 2 2
, , , , , , , , , , , ,

m j j j
s s s s u l t u l t u l t= = , and j  is the number of check-in 

activities. 

Definition 3. (Check-in sequence). After dividing the historical check-in trajectory using a fixed 

length, we obtain the check-in sequence { }poi

1 2 N
S s , s , , s=   for user 

i
u  , where N   is the 

length of the sequence. 

Definition 4. (Temporal and spatial sequences). Generate the corresponding temporal sequence 
poit_ser  and spatial sequence 

poig_ser  based on the user sequence. 

Definition 5. (Geographic scene information). The scene type of the spatial location where user 

i
u  is located is determined by the type of the POI with the largest proportion in the region. 

Problem 1. (POI recommendation). Predict the next most likely POI to be visited by the target 

user in a real-time scenario, based on a given sequence of historical user check-ins. 

4. Proposed Model 

In this study, the CPRM model primarily consists of three components: 

1. Multi-factor feature extraction and an embedding module, which includes extracting 

multi-factor contextual feature information from a user’s historical check-in sequence 

and completing the embedding representation. 

2. A user composite preference modeling module, where the user’s own interest pref-

erences are first aggregated through the two-layer attention network, and the interest 

preferences for the target POIs are then captured to obtain the user’ long- and short-

term preference representations. Next, the user’s own preference expressions influ-

enced by geographic scenarios are aggregated to combine with the user’s real-time 

spatial location to obtain the user’s immediate preference representations. 

3. A recommended prediction module, where a prediction function is utilized to gen-

erate POI suggestions following the weighted fusion of immediate, short-term, and 

long-term preferences (the model structure is depicted in Figure 2). 

Target POIs

...

...

...

...

......

+ .

Top-N POIs

S
el

f 
 A

tt
en

ti
o
n

T
a

rg
e
t 

A
tt

e
n
ti

o
n

Current GS

Gs

...

+ Fusion

. Dot product

Long-term preference 

Short-term preferences

Instant preferences

prepoi(l)

pre
poi(d)

prepoi(r)

prepoi(c)

sign-in 
sequence

...

Embedding 
Module

Preference Modeling 

Module

Recommended Prediction 

Module

pj

Softmax

p1 , p2 ,..., pj

Candidate set

Self-preference aggregation...
 

Figure 2. CPRM model network framework. 

4.1. Multi-Factor Feature Extraction and Embedding Module 

Prior to mining user preferences, contextual feature information about temporal, spa-

tial, and spatiotemporal intervals, geographic scenes, and check-in point interactions is 

extracted from the user’s historical check-in records, forming long-term, short-term, and 

instantaneous sequences that are then transformed into corresponding embedded vector 

Figure 2. CPRM model network framework.

4.1. Multi-Factor Feature Extraction and Embedding Module

Prior to mining user preferences, contextual feature information about temporal,
spatial, and spatiotemporal intervals, geographic scenes, and check-in point interactions
is extracted from the user’s historical check-in records, forming long-term, short-term,
and instantaneous sequences that are then transformed into corresponding embedded
vector representations via self-encoding techniques to aid the model in better capturing the
relationship between the user and the POI (as shown in Figure 3).

4.1.1. Time Information

Time is a crucial factor in analyzing users’ historical check-in behavior, leading to
variations in the points of interest they visit during different time periods. The temporal
feature sequence t_serpoi = {tpoi

1 , tpoi
2 , , . . . , tpoi

n } is created by extracting the temporal features
from the historical check-in sequence of user ui. It is segmented into multi-scales by month,
week, natural day, and hour, and discretized into the relevant numerical data. A week is
divided into w ∈ {0, 1, · · · , 6} and divided into weekdays and days off, and a single natural
day is divided with two hours as the same time slot into h ∈ {0, 1, · · · , 11}. Among them,
the natural days, d ∈ {0, 1, · · · , 30}, in each month are extracted after dividing a year into
m ∈ {0, 1, · · · , 11}. The multiscale temporal features of the user’s check-ins at the k check
are as follows:

tpoi
k = (mk, dk, wk, hk) k ∈ [1, n] (1)
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The user’s selection for how much time should be spent getting to the site of interest
can be reflected in the time interval of each check-in location in the time series. The time
threshold, tavg, is configured to be the average value of the time intervals between all
check-in points. It is said to be a long-time preference when the time interval is greater than
tavg, and a short-time preference when the opposite is true. The ratio of the time interval

to tavg yields the reduced time preference representation, t_interpoi
nn . The user-customized

time unequal interval matrix, ∆Tpoi, is then obtained.

∆Tpoi =


t_interpoi

11 . . . t_interpoi
1n

...
. . .

...
t_interpoi

n1 · · · t_interpoi
nn

 (2)

4.1.2. Spatial Information

Users tend to select tourist attractions that are close to where the current check-in point
is located; therefore, space is a significant consideration when assessing their historical
interaction behavior. To describe the user’s historical trajectory changes, a sequence of
spatial features called g_serpoi = {gpoi

1 , gpoi
2 , . . . , gpoi

n } is formed using the position coordi-
nates that were retrieved from the historical check-in sequence. Haversine’s formula is
used to determine the spatial distance between two check-in locations, and gpoi

j stands for
the spatial feature of the j-th check-in point in the sequence, which consists of latitude and
longitude.

The average value of the spatial distance between all check-in locations is established
as the spatial threshold, gavg, to reflect the user’s preference selection for the distance of
sites of interest. Long-distance preference is considered to exist when the spatial interval is
greater than gavg, and short-distance preference is considered to exist when the opposite is
true. The spatial interval to gavg ratio is used to derive the standardized distance preference

representation, g_interpoi
nn , and this ratio then produces the user-specific spatial unequal

interval matrix, ∆Gpoi.

∆Gpoi =


g_interpoi

11 . . . g_interpoi
1n

...
. . .

...
g_interpoi

n1 · · · g_interpoi
nn

 (3)
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4.1.3. Geographic Scene Information

Throughout a user’s travel journey, their preference choices can be influenced by the
geographic environment, leading to dynamic shifts in interests distinct from their prior
patterns. In this section, we leverage interest point data in the vicinity of the user’s check-in
location. We employ the kernel density estimation method to categorize these interest
points into various geographic scenario categories. Subsequently, we ascertain the current
geographic scenario the user is situated in using the type of ratio denoted as Ci. Because
user preferences are primarily influenced by a constrained set of perceptions, we employ a
single category to represent the prevailing geographic scene. Specifically, geographic scene
is determined by a specific POI type when that particular type attains the highest Ci value,
as calculated using the following formula:

Ci =
di
D
× 100% (4)

where i is the interest point category, di is the kernel density value of the i-th category of
POIs within the scene, D represents the sum of kernel density values across all POI types
in the scene, and di is calculated as follows:

d = f (x) =
1

nh

n

∑
i=1

k(
x−xi

h
) (5)

where {x1, x2, · · · , xn} contains independently and identically distributed sample points, n
is the total number of samples, h is the bandwidth, and k is the kernel function.

4.1.4. Sequence Information Embedding Representation

The user’s behavioral patterns will be influenced by multi-factor contextual informa-
tion such as time, space, temporal and spatial intervals, geographic scenes, etc. By linking
this information with POI interaction information, models can more accurately capture
the relationship between the POIs and user in various contextual information, which will
enhance its performance and ability to be customized. The equation reads as follows:

s =
[
tpoi ∆Tpoigpoi ∆Gpoi Gs classpoi

]
(6)

where s denotes the feature representation of the check-in points in the sequence.
The corresponding context features are chosen to create the long-term sequence,

Spoi(l) = {sl
1, sl

2, · · · , sl
n}, short-term sequence, Spoi(d) = {sd

l , sd
2, · · · , sd

m}, and immediate
sequence, Spoi(r) = {sr

1, sr
2, · · · , sr

k}, where only the check-in points within the immediate
sequence are influenced by the geographic scene. Thus, sl

n, sd
m does not encompass geo-

graphic scene information. Subsequently, we obtain the check-in sequence embedding
matrix, denoted as Epoi, and the Gs matrix, denoted as Egs, through embedding. Specifically,
given the persisting issue of sparsity in the extracted feature data, this paper employs a self-
encoding method. Its purpose is to transform high-dimensional sparse feature information
into a low-dimensional dense space, thereby enhancing both recommendation efficiency
and accuracy. Initially, discrete features in the interaction information of check-in points
are encoded using one-hot coding. Subsequently, the initial parameter matrix undergoes
updates and iterations through the loss function, with the extracted feature sequences being
introduced into the trained model. The resulting hidden layer within the model serves as
the output, representing the embedded features.

4.2. User Composite Preference Modeling Module

Long-term, short-term, and immediate preferences are modeled individually to pro-
vide composite user preferences. Because the attention mechanism has the benefits of
fewer parameters and highly parallelized computational capacity, it can learn the weights
according to the user’s interests, boosting the model’s generalization ability and prediction
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accuracy. The CPRM model creates a dual-layer attention network (DLAN) to mine user
preferences. The DLAN has two components: the self-attention mechanism and the target
attention mechanism (Figure 4). To determine the importance of users’ interests and to
obtain self-interest aggregation, different weights are assigned to users’ historical check-
in behaviors according to the embedded representation matrix of sequences. Next, user
long-term and short-term preferences are first mined by embedding the target POIs, and
then combined with the geographic scenario information to obtain the users’ instantaneous
preferences.
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4.2.1. Long- and Short-Term Preference

Long-term preferences are the user’s consistent preferences and behavioral routines
over an extended period, with a specific regular periodicity. Short-term preferences, which
are often gathered through the user’s most recent engagement with the POI, reflect the
user’s interests and behavioral patterns over a brief period. The embedding matrix, Epoi, of
the long and short-term sequences is used as the input of this module, and the long-term
preference representation, prepoi(l), and short-term preference representation, prepoi(d), are
obtained through steps (1) and (2).

Step (1): The extraction of interrelationships among check-in items is conducted
through the self-attention mechanism embedded within the DLAN network. Concurrently,
weights are assigned to each visit, leading to the generation of weighted feature vectors
that accentuate the user’s own expression of preferences. The three vectors of queries, keys
and values (Q, K, V) of the sequence representation are first obtained by multiplying the
coefficients WQ, WK, WV for each input vector separately using Equation (7) [45]. Then, the
user interaction behavior vector representation is obtained via so f tmax.

S(Epoi)= so f tmax(Qpoi(Kpoi)
T

√
d

)Vpoi

Qpoi = EpoiWpoi
Q

Kpoi = EpoiWpoi
K

Vpoi = EpoiWpoi
V

(7)

where Wpoi
Q , Wpoi

K , and Wpoi
V represent the weight parameters of Query, Key, and Value,

respectively, Qpoi, Kpoi, and Vpoi are the corresponding weight matrices,
√

d is a scaling
factor to counteract the effect of minimal gradient, and S(Epoi) is a characterization of user
interaction behavior after aggregating adaptive weights.

Multiple self-attention and feedforward networks are superimposed to learn more
complicated check-in point transitions to obtain a preference representation, Li, that ag-
gregates the user’s own interests. This preference representation, Li, is formulated as
follows [45]:

Li= FFN(Si(Epoi))= ReLU(Si(Epoi)W1 + b1)W2 + b2 (8)
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Li
(b)= FFN(S(Li

(b−1))) (9)

where W1, W2 is the learnable weight matrix, b1, b2 is the bias term, and ReLU is the acti-
vation function, i ∈ {1, 2, · · · , n}; b takes an integer greater than 1, denoting the current
number of superimposed layers, and the computation of L(1) in the first layer is realized via
multielement context embedding, Epoi. This study provides residual linking, dropout regu-
larization, and layer normalization [46,47] approaches to address issues such overfitting, a
vanishing gradient, and lengthy training times.

g ’ (x) = x + Dropout(g(LayerNorm(x))) (10)

where g(x) denotes the self-attention layer and the feedforward network in each sublayer.
LayerNorm stands for layer normalization, which normalizes the input features and is
useful for speeding and stabilizing network training.

LayerNorm(x) = α� x− υ√
σ2 + ε

+ β (11)

where � denotes the product at the element level. α and β denote the scale factor and
deviation term. υ and σ represent the mean and variance of x, while ε prevents invalid
computation when the variance is zero.

Step (2): Determine the influence weights of the target POI on the sequence of the
user’s historical behaviors through the target attention to express the degree of the user’s
historical behaviors’ contribution to the various target POIs and to highlight the preferences
of the user’s historical behaviors that are connected to the multi-factor information of the
target points. The target POI-embedding representations p and Li, which have aggregated
the user’s own preference representation, are accepted as inputs, and the inner product
function, f (·), models the second-order interaction between the two after normalizing the
output to produce the target attention weight, which is weighted into Li to obtain the user
preference representation prepoi. The expression is as follows:

f (Li, p) = hT
1 tanh(W3(Li � p) + b3) (12)

prepoi =
n

∑
i=1

so f tmax( f (Li, p))Li (13)

where h1 is the vector that converts the output into weights, W3 is the trained weight matrix,
and b3 is the bias vector.

4.2.2. Immediate Preference

During the trip process, users will be impacted by the real-time geographic scene to
form instantaneous preferences and take on haphazard behaviors related to the immediate
area. When a user is in a commercial location, for instance, they are more likely to select
commercial consumption POIs, and when they are in a residential area, they are more likely
to select leisure POIs. Figure 5 illustrates the immediate preference extraction process.
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Interference terms that are unrelated to long-term preferences may be present at
many locations of attraction that consumers often visit over time. The long-term check-in
sequence is modified to include the user long-term preference to calculate each point’s
interest score. The location check-in points with lower interest scores and check-in types
that are like the surrounding geography are then filtered out to create the user’s instant
sequence, Spoi(r). The influence of the spatial–temporal interval factor is not considered in
mining the user immediate preference because the screening process of check-in points is
disordered, resulting in the behaviors in the immediate sequence being unable to be closely
connected according to the spatial–temporal information. The influence of short-term
preference on immediate preference in the sequences is also not considered when modeling
user immediate preferences because the two preferences share some timeliness similarities
and are difficult to extract accurately from the entirety of historical behavioral sequences.

The embedded representation of the geography of each check-in point in the series
is superimposed on the embedded representation of the immediate sequence to take
geography into account, and the expression is as follows:

X =


Epoi(r)

1 + Egs
1

Epoi(r)
2 + Egs

3
· · ·

Epoi(r)
k + Egs

k

 (14)

To provide an instantaneous preference representation, Ri, that aggregates the user’s
own interests, X is calculated in accordance with the procedure in Step (1) of Section 4.2.1.
The user’s real-time localization is next acquired, the target input is chosen to be the
embedded representation, rg, of the real-time geographic scene Gs and its correspond-
ing multi-factor information, in which the user is currently located, and finally the user
immediate preferences are extracted using Step (2) with the following expression:

prepoi(r) =
k

∑
i=1

so f tmax( f (Ri, rg))Ri (15)

4.3. Recommended Prediction Module

To achieve more accurate predictions of the points of interest that users are interested
in, different initialization weights are assigned to each of the three preferences. These
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weights are calculated based on the ratio of the number of long-term, short-term, and
immediate sequences to the total number of sequences. The sum of these weights equals
1, reflecting the relative importance of different preferences in the recommendation task.
The weighted three user preferences are then added up using (16) and fused to produce the
user composite preferences, which are more thorough and accurate, as follows:

prepoi(c)= ξprepoi(l)+ςprepoi(d) + τprepoi(r) (16)

where prepoi(c) denotes the user composite preference; ξ, ς and τ denote the weights of user
long-term, short-term, and immediate preferences, respectively, which are continuously
updated during the model training process. Subsequently, we augment the embedding rep-
resentation of the POI candidate set to compute the similarity between each candidate POI
and the user’s composite preference. This similarity score is then transformed into a proba-
bility value through a normalization function, ultimately guiding the recommendation of
POIs to the user. The specific calculation formula is detailed as follows:

_
y K= so f tmax(pK · prepoi(c)) (17)

where pk ∈ P denotes the set of candidate items in the recommended points of interest.
_
y K

denotes the probability score of the user’s preference for the K-th candidate POI, where a
higher probability indicates that the user is more interested in the POI and vice versa.

As the sequence recommendation task operates as a hidden feedback recommendation
model, locations not visited by the user are randomly assigned as negative samples. To
train the model, we employ the BPR function [48] as the loss function, defining the objective
function as a regularized log-likelihood function with the following formula:

L = −∑
u

∑
i∈Su

∑
j/∈Su

ln(σ( y ^ui − y ^uj)) + λ‖Θ‖2
2 (18)

where i denotes the positive samples in the user’s check-in history, j denotes the negative
samples in the user’s uncheck-in history, σ(·) is the sigmoid activation function, λ is the
regularization coefficient, and Θ denotes the learnable parameters.

5. Experimental Evaluation

The model put out in this paper is subjected to trials in this section to show how
effective it is. The experimental setup, evaluation metrics, and dataset are initially described.
The performance of the approach presented in this study is then compared to that of six
model variants and five baseline methods. Finally, the impacts of the embedding dimension
and sequence length on the performance of the CPRM recommendation are examined.

5.1. Datasets and Pre-Processing

This paper utilizes two classic public datasets from LBSNs: Foursquare [49] and
Gowalla [50]. These datasets are widely acknowledged within the field of POI recom-
mendation and encompass essential data attributes, including user ID, POI ID, latitude,
longitude, and check-in time. Before conducting experiments, it is crucial to preprocess the
data to filter out anomalies and address the challenge of data sparsity within the dataset.
For Foursquare, we exclude POIs with fewer than 15 visits and users with fewer than 10
check-ins. Consequently, the final dataset comprises 6625 users, 14,686 POIs, and 232,568
check-in records. For Gowalla, we exclude POIs with fewer than 10 visits and users with
less than 10 check-ins. This results in a final dataset consisting of 5768 users, 8036 POIs,
and 272,492 check-in records. During the experiment, 80% of the dataset is allocated as
the training set, while the remaining 20% serves as the test set for assessing the method’s
performance.
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5.2. Evaluation Indicators

The performance of the model is measured in the experiments in this paper using
the evaluation metrics normalized discounted cumulative gain (NDCG@N) and Recall@N,
which are frequently used in recommendation algorithms; the higher the value of the
metrics, the better the recommendation effect of the model.

NDCG@N assesses whether or not the user’s actual check-ins are located at the top
of the corresponding recommendation list, serving as an evaluation metric for recommen-
dation accuracy. Recall@N measures the ratio of correctly recommended POIs to the total
number of POIs that the user actually visited, providing an evaluation of the alignment
between user interests and recommendations.

NDCG@N =
DCG@N
IDCG@N

=

N
∑

i=1

reli
log2(i+1)

|REL|
∑

i=1

reli
log2(i+1)

(19)

Recall@N =
|P (r) ∩ P(u)|
|P (u)| (20)

where N denotes the size of the recommendation list, reli denotes the true relevance score
of the i-th recommended result, and |REL| denotes the number of sets formed by taking the
first N results in descending order of results according to relevance. DCG@N denotes the
cumulative true relevance after discounting. IDCG@N denotes the most idealized DCG
value sorted from high to low. P(r) stands for the set of recommended POIs, whereas P(u)
stands for the collection of POIs that the user checked in.

5.3. Implementation Detail

The experiments were conducted using the following system and hardware specifica-
tions: operating system—Windows 10; hardware environment—GeForce RTX 2080Ti with
128GB of memory; and software environment—TensorFlow 2.6 deep learning framework.
To determine the geographic scene in which the user is located, we selected POIs around
the check-in point, and the predicted point coordinates were used to represent the user’s
real-time location. The model hyperparameters were set as follows: Learning Rate = 0.01,
Dropout = 0.05, Batch size = 128, λ = 0.001, and sequence length = 2, 5, and 10. To
minimize the loss function, we optimized the model using the Adam [51] optimizer to
obtain the best parameters. In the baseline models, the batch size for TMCA, GRU, and
ST-RNN was set to 256, while other parameters remained the same as those in this paper.
Additionally, the stochastic gradient descent algorithm was used to update the parameters
in USG and FPMC.

5.4. Model Performance Comparison

The CPRM model is compared with five POI recommendation methods in this study in
order to validate its efficacy: USG [52], FPMC [53], GRU [54], ST-RNN [10], and TMCA [55].

Tables 3 and 4 display the performance of various algorithms for recommendations on
the Foursquare and Gowalla datasets when N is set to 2, 5, or 10, respectively. Overall, as the
number of suggested POIs, N, rises, so does that of Recall@N and NDCG@N of different
algorithms. Tables 3 and 4 show that the USG model based on collaborative filtering
performs the worst with the same number of recommended POIs. This is because the
collaborative filtering approach has limitations in learning user preferences and contextual
information from sequences, and it is difficult to consider the sequential order of users’
historical check-ins in sequences. Although the FPMC, which takes into consideration the
user’s mobile behaviors and preferences, performs slightly better than the USG model does,
there are still significant limitations in how it handles the user’s long-term preferences and
how it can effectively capture the user’s interest evolution process. Since all three models
can efficiently employ sequence data and capture long-term dependencies, save previous
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data, use them in following time steps, and capture long-term dependencies, the TMCA,
GRU, and ST-RNN models outperform the USG and FPMC models, especially when N
= 10. In the meantime, the GRU model’s gating mechanism can choose to ignore certain
irrelevant data, which is helpful for exploring any potential connections between users
and POIs. While the TMCA model incorporates a variety of situational information and
attentional mechanisms, which improves the modeling of the extent to which different POIs
in the user’s historical behaviors contribute to preferences, both GRU and ST-RNN models
based on recurrent neural networks struggle to capture the impact of check-in behavior on
user preferences from the user’s historical check-ins. As a result, overall, the TMCA model
performs better in terms of recommendations than the USG, FPMC, GRU, and ST-RNN
models do.

Table 3. CPRM vs. other algorithms in the Foursquare dataset.

Method Recall@2 Recall@5 Recall@10 NDCG@2 NDCG@5 NDCG@10

USG 0.0532 0.0978 0.1207 0.0475 0.0579 0.0743
FPMC 0.0871 0.1674 0.1984 0.0792 0.1182 0.1237
GRU 0.1317 0.1668 0.2163 0.1017 0.1107 0.1380

ST-RNN 0.1473 0.1892 0.2264 0.1172 0.1289 0.1671
TMCA 0.1589 0.1906 0.2433 0.1208 0.1330 0.1681
Ours 0.1671 0.2387 0.3088 0.1437 0.1751 0.1967

Table 4. CPRM vs. other algorithms in Gowalla dataset.

Method Recall@2 Recall@5 Recall@10 NDCG@2 NDCG@5 NDCG@10

USG 0.0412 0.0778 0.1039 0.0240 0.0489 0.0681
FPMC 0.0971 0.1408 0.1689 0.0852 0.1080 0.1114
GRU 0.1256 0.1570 0.2013 0.0969 0.1072 0.1395

ST-RNN 0.1578 0.1751 0.2046 0.1267 0.1429 0.1497
TMCA 0.1433 0.1762 0.2307 0.1158 0.1238 0.1591
Ours 0.1485 0.2287 0.2573 0.1207 0.1450 0.1627

The experiments reveal that the CPRM model exhibits its peak performance when
N = 10. In the Foursquare dataset, CPRM demonstrates remarkable improvements, enhanc-
ing Recal1@10 and NDCG@10 by 26.92% to 155.84% and 17.01% to 164.74%, respectively,
compared to other models. Similarly, in the Gowalla dataset, CPRM leads to enhancements
of 11.53% to 147.64% and 2.26% to 138.91%, respectively. These notable achievements
can be attributed to two pivotal factors. Firstly, the CPRM model seamlessly integrates
multifaceted contextual information into the user’s check-in sequence. It considers the
user’s immediate interest preferences and preferences for target POIs, thus effectively
capturing correlations within and beyond the sequence. Secondly, the CPRM model delves
into user long-term, short-term, and immediate preferences, enabling dynamic updates to
the user’s preferences. In summary, CPRM outperforms all the other models we compared
and offers an effective approach for personalized user recommendations.

5.5. Ablation Experiment

The CPRM model comprises several key modules. To assess the effectiveness of
these modules, we conducted ablation experiments, considering both user preferences and
attention mechanisms. The comparison of variant models is presented in Table 5.
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Table 5. Comparison of the variant models of CPRM.

Variants
User

Long-Term
Preferences

User
Short-Term
Preferences

User
Immediate
Preferences

Self-
Attention

Target
Attention

CPRM-l-d 7 * 7 3 - -
CPRM-l-r 7 3 7 - -
CPRM-r-d 3 7 7 - -

CPRM-l 7 3 3 - -
CPRM-d 3 7 3 - -
CPRM-r 3 3 7 - -
CPRM-a - - - 3 7

CPRM-s - - - 7 3

* “3” indicates that the module is considered, “7” indicates that it is not considered and “-” Indicates that it does
not involve.

5.5.1. The Impact of Composite Preferences

Long-term, short-term, and immediate preferences of the user are all considered in the
CPRM. Six variations of the model are created to remove various influences on the POIs
for recommendations, to better illustrate the extent to which various preferences affect the
recommendation effect in the CPRM model:

1. CPRM-l-d: Considering only the impact of the user’s immediate preferences.
2. CPRM-l-r: Considering only the impact of the user’s short-term preferences.
3. CPRM-r-d: Considering only the impact of the user’s long-term preferences.
4. CPRM-l: Considering only the impact of the user’s immediate and short-term prefer-

ences.
5. CPRM-d: Considering only the impact of the user’s immediate and long-term prefer-

ences.
6. CPRM-r: Considering only the impact of the user’s long- and short-term preferences.

On the Foursquare and Gowalla datasets, experiments comparing the six model ver-
sions and the CPRM model are conducted. The efficiency of the models’ recommendations
is assessed using two evaluation metrics, Recall@10 and NDCG@10, and the findings are
displayed in Table 6.

Table 6. The effect of different preferences on POI recommendations.

Method
Foursquare Gowalla

Recall@10 NDCG@10 Recall@10 NDCG@10

CPRM-r 0.2881 0.1755 0.2117 0.1374
CPRM-d 0.2763 0.1581 0.2043 0.1306
CPRM-l 0.1869 0.1306 0.1723 0.1187

CPRM-r-d 0.2051 0.1418 0.1907 0.1357
CPRM-l-r 0.1436 0.1021 0.1163 0.0779
CPRM-l-d 0.1047 0.0952 0.0712 0.0490

Ours 0.3088 0.1967 0.2573 0.1627

Table 6 shows that CPRM-r outperforms the other model variants in terms of rec-
ommendation performance, suggesting that users are primarily influenced by long- and
short-term preferences in POI recommendations, with long-term preferences having a
greater influence than short-term preferences do. When long-term or short-term pref-
erences are merged with instantaneous preferences, model recommendation effects are
improved, according to the model performance of CPRM-l and CPRM-d, which outper-
form CPRM-l-r and CPRM-r-d, respectively. When immediate preference and long-term
preference are combined, the effect is greater than that when immediate preference and
short-term preference are combined. This is because long-term preference and immediate
preference clearly differ in how users express their interests and complement one another,
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while short-term preference and instant preference may be similar or identical depend-
ing on the distance between the user’s most recent check-in point and current location.
This will result in a homogenization of interests when making recommendations. When
making recommendations, this may result in a homogeneity of interests, which reduces
the effectiveness of the advice. The CPRM-l-d model has the lowest recommendation
performance, indicating that the POI recommendation effect of relying only on immediate
preferences is unsatisfactory. This is because immediate preferences are primarily able to
deal with the unexpected situation of user preference changes, are influenced by geographic
scenarios and have a limited perceptual range. In conclusion, the immediate preference
can efficiently convey the preferences changes of users influenced by geographic scenes
while traveling, and fusion with long-term preference or short-term preference can improve
the recommendation effect. The performance of the CPRM model is significantly higher
than that of the other variants, demonstrating that the fusion of the three different types of
preferences can improve the recommendation effect of the model.

5.5.2. The Impact of Two-Layer Attention Networks

The self-attention layer aggregates the user’s personal preferences, while the target-
attention layer aggregates the user’s preferences for the target POIs. This two-layer attention
network is how the CPRM model extracts user preferences. As a result, two variations of
the model are created to examine the impacts of various levels of attention on the effect of
recommendations, as follows:

1. CPRM-a: Only the effects of self-attention are considered.
2. CPRM-s: Only the effects of target attention are considered.

Recall@N and NDCG@N were used as evaluation metrics to measure the recommenda-
tion effect of each model, and N = 2, 5, and 10 were established. The experiments’ outcomes
are presented in Figures 6 and 7. These 2 variant models were tested alongside the CPRM
model on the dataset.
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Figures 6 and 7 show that the overall recommendation effect of all models is best at
N = 10 (values in Table 7). In Foursquare and Gowalla, the recall of CPRM-a is 8.70% and
2.88% higher than that of CPRM-s, and the NDCG is 4.77% and 1.92% higher than that of
CPRM-s, respectively. This is so that the self-attention mechanism may collect the user’s
own preferences expressed in the POIs and completely learn the long-term dependencies
in the user’s historical check-in sequence. The target attention method, on the other hand,
ignores the correlation between the check-in points in the user’s check-in sequence and
just expresses the user’s preference level for the target POI, which results in a smaller
recommendation effect. The CPRM model put forth in this paper combines the mechanisms
for self-attention and target attention, weights historical check-in behaviors with various
weights to highlight user preferences, and aggregates the long-term dependency relation-
ship and the degree of preference for the target POIs in the historical check-in sequences.
Hence, this model has a better recommending effect than do variant models.

Table 7. Impact of different attention variant models on POI recommendations.

Method
Foursquare Gowalla

Recall@10 NDCG@10 Recall@10 NDCG@10

CPRM-a 0.2745 0.1776 0.1903 0.1326
CPRM-s 0.1875 0.1299 0.1615 0.1134

Ours 0.3088 0.1967 0.2573 0.1627

Tables 6 and 7 compare the outcomes of the two ablation experiments, showing that
CPRM performs better than the other variations of the model while CPRM-r, CPRM-d,
and CPRM-a have better metrics than the other variants of the model. In Foursquare,
the Recall@10 of CPRM is 2.07%, 3.25% and 3.43% higher than CPRM-r, CPRM-d and
CPRM-a, respectively. In Gowalla it is higher by 4.56%, 5.30% and 6.70%, respectively.
These results underscore the significant impact of both long-term preferences and the
self-attention mechanisms on overall recommendation performance. In summary, the
CPRM model not only integrates user long-term, short-term, and immediate preferences
but also incorporates a two-layer attention mechanism. This comprehensive approach
yields a substantial improvement in recommendation performance compared to that of the
baseline model.

5.6. Parameter Impact Analysis

This experiment primarily examines how the embedding dimension and sequence
length affect the CPRM model’s recommendation effect. By varying the size of the param-
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eters, the model determines the ideal number of embedding dimensions and sequence
length values that should be used in the experiment to derive the maximum Recall@N.

5.6.1. The Impact of Embedded Dimension

The recommendation accuracy of the CPRM model is significantly impacted by the
extraction dimension of multi-factor contextual information. Therefore, the experiment was
conducted with feature embedding dimensions set at [30, 40, 50, 60, 70, 80], and the impact
on Recall@N for POI recommendations when N = 2, 5, and 10 is illustrated in Figure 8a,b.
The recommendation effectiveness exhibits a rapid incline as the feature-embedding dimen-
sion increases, with the peak occurring at a dimension of 60, followed by a gradual decline.
This phenomenon can be attributed to the following factors: when the dimension is too
small, the extracted features may not adequately capture the diverse characteristics of his-
torical check-in behaviors; conversely, an excessively large dimension introduces excessive
noise when describing check-in behaviors, thereby impacting the model’s recommendation
efficiency. Additionally, the model achieves its highest recommendation performance when
N = 10. Hence, in this paper, the model achieves its optimal recommendation performance
when the embedding dimension is set to 60, and the number of recommended interest
points is 10 in the selected datasets.
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5.6.2. The Impact of Sequence Length

Sequence length is crucial in dual-attention networks to capture the different types
of user sequences, which significantly affects the recommendation effect. Therefore, the
experiments involved setting the sequence length within the range of 60 to 130. The impact
on Recall@10 for recommendations is illustrated in Figure 9. According to the figure, the
model’s performance improves with an increasing sequence length and peaks at 90 and 110
before starting to fall when the recall rate is chosen as Recall@10. The reason could be that
if the sequence length is too long, it will likely contain useless information, add noise to the
model, and increase computational complexity. On the other hand, if the sequence length
is too short, it will likely be challenging for the model to obtain regular preferences when
mining user preferences, which will result in subpar recommendation results. To achieve
the best recommendation effect, the sequence lengths of 90 and 110 in the Foursquare and
Gowalla datasets, respectively, were chosen in this paper.
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6. Discussion

This section begins by comparing the findings of this paper with those of previous
studies, highlighting the significant contributions made by this research, and subsequently
addressing its limitations and suggesting directions for future research.

Several factors influence the accuracy of recommendation predictions, encompassing
various aspects such as user long-term and user short-term preferences, and contextual
information. Given that LBSN datasets often contend with issues related to sparsity and
cold-start problems, several studies have incorporated pertinent considerations to address
these challenges and realize personalized POI recommendations. Based on the findings pre-
sented in Table 8, it is evident that most of the existing literature leverages spatial–temporal
information alongside user long-term and short-term preferences. This underscores the sig-
nificance of these factors in the realm of recommendation systems. Notably, several studies,
including those in References [18,24,55], employ the attention mechanism to dynamically
adjust weights, a technique that proves instrumental in capturing intricate dependencies
between users and POIs within a sequence. Reference [24], for instance, employs the atten-
tion mechanism to investigate the impact of spatial–temporal intervals on user preferences,
resulting in improved model performance, surpassing that in References [10,53]. This paper
serves as a synthesis of these insights. Beyond this, most recommendation methods often
overlook the fact that users may exhibit different behavioral patterns in specific scenarios,
deviating from their typical habits. To address this challenge, the CPRM proposed in this
paper initially incorporates various contextual factors, including spatial–temporal data,
spatial–temporal intervals, and geographic scenarios. Subsequently, it employs a DLAN
network to comprehensively capture users’ preferences in a two-step process, ultimately
providing personalized recommendations for the next POI to users. The primary advan-
tage of CPRM lies in the incorporation of an instant preference extraction module, which
significantly enhances the comprehensiveness of user preferences. Secondly, the model
employs a two-layer attention mechanism to concurrently extract multiple preferences,
thus effectively reducing computational overhead. By leveraging the user’s contextual
information, this approach enhances real-time accuracy in responding to user demands
and offers a novel method for personalized POI recommendations.



Electronics 2023, 12, 4199 21 of 24

Table 8. Considerations for different methods.

Method Spatial-Temporal Spatial-Temporal
Interval

User Long- and
Short-Term
Preferences

User
Immediate
Preference

Attention
Mechanism

FPMC [53]
√

URPI-GRU [14]
√

ST-RNN [10]
√

MST-RNN [34]
√ √

TMCA [55]
√ √ √

LSPL [18]
√ √ √

STUIC-SAN [24]
√ √ √ √

RTPM [36]
√ √ √

CPRM
√ √ √ √ √

The CPRM model proposed in this paper has versatile applications across domains
such as tourism, city navigation, advertising, marketing, social media, and networking. For
service providers and merchants, it assists in tailoring recommendations of personalized
POIs to users based on their preferences. Likewise, for users, it aids in discovering the
most relevant POIs that align with their immediate needs. To a significant extent, this
model enhances user experiences, improves operational efficiency, and contributes to the
realization of both business and social objectives.

After conducting an extensive array of experiments, it becomes evident that CPRM
excels in recommendation performance; however, it still exhibits certain limitations and
areas that warrant improvement. Notably, the immediate preference extraction method
presented in this paper solely depends on a user’s historical check-in sequence, potentially
resulting in less accurate user preferences when historical data is sparse. Therefore, for
future research, we plan to focus on two key areas:

• Incorporating association rule methods. This involves mining preference confidence
among different user types for various geographic scenarios using multi-source het-
erogeneous data to establish corresponding derivation rules. This will enhance the
representation of user immediate preferences, especially in scenarios with sparse data,
via the calculation of similarity between users.

• Incorporating decoupled learning representations. This will involve initially learning
the representations of users and POIs within the user’s historical sequence separately.
Subsequently, these representations will be combined to calculate similarity or correla-
tion, thereby enabling the capture of intricate user preferences.

7. Conclusions

In response to the limitations of current POI recommendation methods, which often
overlook immediate user preferences and fail to meet users’ real-time and accuracy require-
ments, this paper proposes a POI recommendation approach that integrates user composite
preferences. We began by extracting multi-factor contextual feature information from a
user’s historical check-in sequence to serve as the foundation for model construction and
prediction. Subsequently, we employed a two-layer attention mechanism to extract the user
long-term, short-term, and immediate preferences, thereby providing a comprehensive set
of preferences for predicting POI recommendations. Finally, by fusing these composite
preferences, we enhance the accuracy of personalized POI predictions. To validate the
effectiveness of the proposed method, experiments were conducted to compare the CPRM
model with five other algorithms, including TMCA. For N = 10, the NDCG of CPRM in the
Foursquare and Gowalla datasets was, respectively, improved by 17.01% and 2.26%, and
the Recall was improved by 26.92% and 11.53%, when compared with that of the superior
TMCA algorithm. The results indicate that the composite preference, which integrates
the user’s long-term, short-term, and immediate preferences, can more accurately predict
the user’s POI choices. This approach enables the provision of on-demand, proactive
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personalized POI recommendations, thereby enhancing the accuracy and efficiency of the
recommendation model. In future research, we plan to explore two directions. Firstly, we
consider employing the association rule approach to mine preference confidence among dif-
ferent user types in various geographic scenarios. This will enable us to obtain more precise
immediate preference expressions. Secondly, we aim to use disentangled representation
learning techniques to comprehensively capture user preferences.
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