
Towards Understanding Self-Supervised

Representation Learning

Nikunj Saunshi

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Sanjeev Arora

September 2022

© Copyright by Nikunj Saunshi, 2022.

All Rights Reserved

Abstract

While supervised learning sparked the deep learning boom, it has some critical shortcomings: (1) it requires an

abundance of expensive labeled data, and (2) it solves tasks from scratch rather than the human-like approach

of leveraging knowledge and skills acquired from prior experiences. Pre-training has emerged as an alternative

and effective paradigm, to overcome these shortcomings, whereby a model is first trained using easily acquirable

data, and later used to solve downstream tasks of interest with much fewer labeled data than supervised

learning. Pre-training using unlabeled data, a.k.a. self-supervised learning, has been especially revolutionary,

with successes in diverse domains: text, vision, speech, etc. This raises an interesting and challenging question:

why should pre-training on unlabeled data help with seemingly unrelated downstream tasks?

In this thesis we present works that initiate and build a theoretical framework to study why self-supervised

learning is beneficial for downstream tasks. The framework is applied to methods like contrastive learning,

auto-regressive language modeling and self-prediction based methods. Central to the framework is the idea

that pre-training helps learn low-dimensional representations of data, that subsequently help solve downstream

tasks of interest with linear classifiers, requiring fewer labeled data. A common theme is to formalize what are

desirable properties of the unlabeled data distribution that is used to construct the self-supervised learning

task. Under appropriate formalizations, it can be shown that approximately minimizing the right pre-training

objectives can extract the downstream signal that is implicitly encoded in the unlabeled data distribution.

Finally it is shown that this signal can be decoded from the learned representations using linear classifiers,

thus providing a formalization for transference of “skills and knowledge” across tasks.

iii

Acknowledgements

Writing this section has gladly taken me down many memory lanes over the last 6 years. Firstly I would like

to express my utmost gratitude to my adviser, Prof. Sanjeev Arora, whose guidance and mentorship has

been invaluable in my research and grad school journey. His research philosophy of diving into challenging

unexplored problems, seeking to find the simplest and “truest” explanations, and emphasis on crisp and

effective communication of complex ideas1 have had a great influence on me as a researcher. He has been

very generous with his time and it has been a lot of fun, and a privilege, to pick his brain on various topics,

within and outside of research. I have been very fortunate to have him as my adviser.

I am very grateful to Akshay Krishnamurthy, Elad Hazan, Jason Lee, Sham Kakade, Karthik Narasimhan,

Danqi Chen and Chi Jin for their valuable mentorship and feedback in various stages of my PhD. Special

thanks to Pravesh Kothari and Samory Kpotufe for encouraging me to apply to PhD programs.

I had the pleasure and fortune of collaborating with many brilliant researchers from whom I learned a ton:

Sanjeev Arora, Jordan T. Ash, Simon S. Du, Surbhi Goel, Arushi Gupta, Wei Hu, Sham Kakade, Hrishi

Khandeparkar, Misha Khodak, Akshay Krishnamurthy, Jason Lee, Qi Lei, Yingyu Liang, Yuping Luo, Kaifeng

Lyu, Tengyu Ma, Sadhika Malladi, Dipendra Misra, Orestis Plevrakis, Brandon Stewart, Kiran Vodrahalli,

Dingli Yu, Cyril Zhang, Yi Zhang, Jiacheng Zhuo. I am also grateful for the insightful and fun conversations

with Brian Bullins, Xinyi Chen, Matheus Ferreira, Holden Lee, Zhiyuan Li, Edgar Minasyan, Abhishek

Panigrahi, Andrej Risteski and Haoyu Zhao. I learned a lot through AlgML, Gems, theory talk series and am

also thankful for them violating the no free lunch principle. I would also like to thank the administrative

staff in Davis IC and the Computer Science department, especially Mitra Kelly and Nicki Mahler. The work

in this thesis is supported by Sanjeev Arora’s grants from NSF, ONR, the Simons Foundation, the Schmidt

Foundation, Mozilla Research, Amazon Research, DARPA, and SRC, and also a Siebel scholarship.

A special thanks to Hrishi, Orestis, Wei and Yi for all the insightful and fun discussions in the office, during

meals, while having coffee, while making coffee, etc. I am grateful for the friendship and collaborations with

Misha and Kiran, through the pre and post Boffini eras. I would also like to thank Cyril, Surbhi and Yi for

all the discussion (research, philosophical, random) and the valuable help through job search.

A crucial aspect of my life at Princeton has been the sports clubs and I am grateful to the Princeton

Badminton Club for the fun overnight tourneys with the team, the team spirit of the Cricket Club team and

1Not to forget, appreciation for good espresso

iv

the constancy of GradFC.

The grad school journey was made fun and exciting by the many friends here: Akash, Akshay K, Akshay Y,

Arjun, Gopi, Karan, Naman, Niran, Sanjay, Sravya, Sumegha, Visu, Yatin. I have been extremely lucky to

have gotten closer to the 45 group2 during the pandemic: Divya, Meera, Nivedita, Pranav and Vivek. Special

thanks to Divya and Sravya for all the dinner sessions and bearing with my jokes, Vivek and Pranav for all

the magical discussions, and Meera for the projections. Last but not the least, I am grateful to Nivedita for all

the bits, constant entertainment and the unfinished duets that we hope to finish in the coming years.

My family has been a constant source of love and support, including the SUN and NASA groups, with the

newest member Ayu being the reason for many smiles. I would like to dedicate this thesis to my parents,

Nirmala Saunshi and Umesh Saunshi, and to my sister Shrutika Saunshi, because this would have been

impossible if not for their support, the values they instilled in me, and all the sacrifices they have made.

2in need of unhexing

v

Contents

Abstract . iii

Acknowledgements . iv

1 Introduction 1

1.1 Overarching theoretical formalization . 3

1.1.1 Representation learning . 3

1.1.2 Downstream classification task . 4

1.1.3 Self-supervised learning task . 5

1.1.4 Assumptions and guarantees . 5

1.2 Overview of contributions . 7

1.2.1 Contrastive learning . 7

1.2.2 Self-prediction methods . 8

1.2.3 Language modeling . 8

1.3 Previously published work . 9

I Contrastive Learning 10

2 A Theoretical Analysis of Contrastive Unsupervised Representation Learning 11

2.1 Introduction . 12

2.2 Framework for contrastive learning . 13

2.3 Overview of analysis and results . 17

2.4 Guaranteed average binary classification . 18

2.4.1 Upper bound using unsupervised loss . 18

vi

2.4.2 Price of negative sampling: class collision . 20

2.5 Towards competitive guarantees . 21

2.5.1 Limitations of contrastive learning . 22

2.5.2 Competitive bound via intraclass concentration . 23

2.6 Multiple negative samples and block similarity . 24

2.6.1 Guarantees for k negative samples . 24

2.6.2 Effect of excessive negative sampling . 25

2.6.3 Blocks of similar points . 25

2.7 Related work . 26

2.8 Experimental results . 27

2.8.1 Controlled experiments . 28

2.8.2 Effect of block size . 30

2.9 Conclusion . 30

2.10 Deferred proofs . 32

2.10.1 Class collision lemma . 32

2.10.2 Proof of Lemma 2.5.1 . 33

2.10.3 Generalization bound . 33

2.10.4 Proof of Proposition 2.6.3 . 36

2.11 Results for k negative samples . 36

2.11.1 Formal theorem statement and proof . 36

2.11.2 Competitive bound . 42

2.12 Examples for Section 2.6.2 . 43

2.13 Experiment details . 44

2.13.1 Wiki-3029 construction . 44

2.13.2 GRU model . 44

3 Understanding Contrastive Learning Requires Incorporating Inductive Biases 45

3.1 Introduction . 46

3.1.1 Related work . 48

3.2 Preliminaries . 49

3.3 Warm-up: contrastive learning on hyper�s . 52

3.4 Lower bounds and improved analysis . 53

vii

3.4.1 Lower bound for disjoint augmentations . 54

3.4.2 Prior theoretical results and failure modes . 56

3.4.3 Function class dependent transfer guarantees . 57

3.5 Experiments . 59

3.5.1 CIFAR-10 + SimCLR experiments . 60

3.5.2 Are we in the disjoint augmentation regime? . 62

3.5.3 Experiments on text domain . 63

3.6 Conclusion . 64

3.7 Omitted Proofs . 65

3.7.1 Proof of Corollary 3.4.11 . 65

3.8 Proof for linear representation upper bound . 65

3.8.1 Matrix notation . 68

3.8.2 Connecting losses to matrix notations . 70

3.8.3 Proof of main result . 74

3.8.4 Discussion of upper bound . 82

3.9 Proofs for lower bounds for (approximately) disjoint augmentations 83

3.9.1 Approximately disjoint augmentations . 87

3.10 Experiment details . 89

3.10.1 Synthetic experiments: hypercube example . 89

3.10.2 CIFAR-10 + SimCLR experiments . 90

3.10.3 Experiments on text domain . 94

II Self-Prediction Methods 100

4 Predicting What You Already Know Helps: Provable Self-Supervised Learning 101

4.1 Introduction . 102

4.1.1 Related work . 103

4.1.2 Overview of results: . 105

4.2 Preliminary . 105

4.2.1 Notation . 105

4.2.2 Setup and methodology . 106

viii

4.3 Guaranteed recovery with conditional independence . 107

4.3.1 Universal function class. 108

4.3.2 Function class induced by feature maps. 109

4.4 Beyond conditional independence . 110

4.5 Example: topic modeling . 113

4.6 Conditional distribution decomposition: SimSiam, CCA, ACE 115

4.6.1 Theoretical guarantees for non-linear CCA . 115

4.6.2 Connection to ACE algorithm and maximal correlation 117

4.7 Experiments . 119

4.8 Conclusion . 121

4.9 Some useful facts . 122

4.9.1 Relation of inverse covariance matrix and partial correlation 122

4.9.2 Relation to conditional independence . 122

4.9.3 Technical facts for matrix concentration . 123

4.10 Warm-up: jointly Gaussian variables . 125

4.11 Omitted proofs with conditional independence . 127

4.11.1 Omitted proof for general random variables . 129

4.11.2 Omitted proof of linear model with approximation error 130

4.11.3 Argument on denoising auto-encoder or context encoder 132

4.12 Omitted Proofs Beyond Conditional Independence . 133

4.12.1 Warm-up: Jointly Gaussian Variables . 133

4.12.2 Measuring conditional dependence with cross-covariance operator 135

4.12.3 Omitted Proof in General Setting . 136

4.12.4 Omitted Proof for Main Results . 138

4.12.5 Principal Component Regression . 141

4.12.6 Proof for topic modeling example . 143

4.13 Omitted proofs on learning the conditional distribution . 144

4.13.1 Introducing the operators on the Hilbert spaces . 144

4.13.2 Proof of Theorem 4.13.1 . 146

4.14 General results and comparison to multi-view redundancy . 152

4.14.1 General results . 152

ix

4.14.2 Multi-view redundancy . 153

4.14.3 Showing E[Y |X1] ≈ E[Y |X1, X2] . 155

4.15 Theoretical analysis for classification tasks . 157

4.15.1 Classification tasks . 157

4.16 Four different ways to use CI . 158

4.16.1 Inverse covariance matrix . 159

4.16.2 Closed form of linear conditional expectation . 161

4.16.3 From law of iterated expectation . 161

4.16.4 From E[X2|X1, Y] = E[X2|Y] . 162

4.17 Experiment details . 164

III Language Modeling 167

5 A Mathematical Exploration of Why Language Models Help Solve Downstream Tasks 168

5.1 Introduction . 169

5.1.1 Related work . 170

5.2 Language modeling and optimal solutions . 171

5.2.1 Language modeling using cross-entropy . 172

5.2.2 Softmax parametrized language modeling . 172

5.3 Using language models for classification tasks . 173

5.3.1 Sentence completion reformulation . 173

5.3.2 Natural classification tasks . 174

5.4 Guarantees for language models on natural tasks . 176

5.4.1 Arbitary language models . 176

5.4.2 Softmax language model with conditional mean features 178

5.4.3 Φpf (s) is a linear function of f(s) . 179

5.5 Extensions . 179

5.5.1 Better handling of distributional shift . 179

5.5.2 Quad: A new objective function . 180

5.6 Experiments . 182

5.7 Conclusions and future work . 183

x

5.8 Overview . 184

5.9 More on better handling of distributional shift . 184

5.10 More on Quad . 186

5.11 More on natural tasks . 187

5.11.1 Sentence completion reformulation ≡ natural task . 187

5.11.2 Nice properties of word embeddings Φ . 190

5.11.3 Proofs for Section 5.11.1 . 193

5.12 Omitted proofs . 194

5.12.1 Proof sketch . 194

5.12.2 Proofs for arbitrary language models . 196

5.12.3 Proofs for softmax language models . 198

5.12.4 Proofs for Section 5.4.3 . 200

5.12.5 Proofs for Section 5.10 . 201

5.12.6 Proofs for supporting lemmas . 203

5.13 Experiment details . 210

5.13.1 Solving downstream tasks using f and Φpf . 211

5.13.2 Finetuning experiments . 212

5.13.3 Testing Quad objective . 214

5.13.4 Learning the quadratic approximation of the log-partition function 215

5.13.5 Experimentally checking Theorem 5.4.3 . 217

xi

Chapter 1

Introduction

In the quest to design intelligent agents and data-driven solutions to problems, the field of machine learning and

AI has made tremendous advances in the last decade. Sparked with initial successes on challenging supervised

learning benchmarks like ImageNet [Deng et al., 2009], innovations in deep learning have subsequently led to

models with super-human performances on many such benchmarks across various domains. Training such

task-specific models is certainly impressive and has immense utility. However it suffers from an important

limitation of requiring large labeled or annotated datasets, which is often expensive to obtain. Additionally,

from the standpoint of intelligence, one would hope for more general purpose models which, like humans [Ahn

and Brewer, 1993], can learn from prior experiences, summarize them into skills or concepts and leverage

those to solve new tasks with very few or no demonstrations. After all babies learn a lot through observations

and interactions in the world without explicit supervision. These limitations have inspired the alternative

paradigm of pre-training.

The focus on this thesis is on pre-training using unlabeled data, which is often available in abundance. The

idea of using unlabeled data has always been of interest in machine learning, specifically through unsupervised

learning and semi-supervised learning. The modern adaptation of this using deep learning is popularly

termed as self-supervised learning (SSL) and has begun to change the landscape of machine learning and

AI through ideas like contrastive learning and language modeling. The idea of self-supervised learning is

to construct certain tasks using just unlabeled data, and train a model to do well on the constructed tasks.

Such tasks often require the model to encode structural properties of the data through predicting unobserved

1

or hidden parts (or properties) of the input from the observed or retained parts [LeCun and Misra, 2021].

Self-supervised learning has demonstrated versatility and utility on many downstream tasks of interest, often

with better sample efficiency than solving the tasks from scratch, thus bringing us a step closer to the goal of

general purpose intelligent agents. In fact more recently, large language models like GPT-3 [Brown et al.,

2020] and others have demonstrated fascinating “emergent behaviors” that arise at scale, fueling more interest

in the idea of self-supervised pre-training.

Although self-supervised learning has enjoyed empirical successes and continues to show great promise, a good

theoretical understanding of why it works, besides rough intuitions, is still lacking. These impressive successes

raise intriguing questions, since it is a priori unclear why a model trained on one task should help with a

different and seemingly unrelated task, i.e. why training on task A should help with task B. While a complete

theoretical understanding of SSL (and deep learning in general) is challenging and elusive, understanding

such phenomena at any level of abstraction could be helpful in developing more principled algorithms. This

thesis is motivated by the following questions:

Why does training on a self-supervised learning task (using abundant unlabeled data) help with solving a

data-scarce downstream task? How does one formalize transferring of “knowledge & skills”?

While there is extensive and rich literature on supervised learning, the generalization from an SSL task →

downstream task is fundamentally different from the generalization from train set → test set in supervised

learning. For supervised learning on a downstream task of classification, for instance, a model trained on the

train set of input-label pairs, sampled from an unknown distribution, can be directly used for evaluation on

the unseen test set sampled from the same distribution. This underlying distribution is what establishes a

connection from the train set→ test set. However the conceptual connection from an SSL task→ downstream

task is much less clear, since the unlabeled data used in the SSL task has no explicit signal about the downstream

labels. An implication of this is that a model pre-trained on an SSL task (e.g. predicting part of an input

from the rest of it) cannot be directly used for a downstream task (e.g. predicting class label from an input).

Hence the transferring of “knowledge and skills” requires additional training step using some labeled data,

ideally lesser than what supervised learning from scratch would require. Any theoretical understanding of

the generalization from an SSL task → downstream task will need to address these questions: “what is

the inherent role of unlabeled data?” and “how to use a pre-trained model for the downstream task?” In

this thesis, we study these questions, for the downstream task of classification, by making distributional

assumptions about the unlabeled data and leveraging the idea of representation learning as follows:

2

(a) (Distributional assumptions) Unlabeled data distribution implicitly contains information about the

downstream classification task(s) of interest.

(b) (Representation learning) Models pre-trained on an appropriate SSL task can encode this signal through

learned representations that can subsequently solve downstream classification tasks with linear classifiers.

Point (a) suggests that certain structure properties of the unlabeled implicitly provide us hints about subse-

quent downstream tasks, and self-supervised learning can help tease out this signal from the data. Point (b)

suggests a simple and empirically effective way to use a pre-trained model that leverages the model’s learned

representations. In this thesis we identify and mathematically quantify distributional properties of the unla-

beled data, for different SSL methods like contrastive learning, language modeling and self-prediction, that can

provably lead to learning good representations. In the next section we delve deeper into idea of representation

learning and our formalization of why self-supervised learning helps with downstream tasks.

1.1 Overarching theoretical formalization

We first describe the key components of our theoretical formalization. The term pre-training is used to

denote training a model on a some task or tasks for potential use in subsequent more interesting tasks,

a.k.a. downstream tasks. The downstream task (e.g. clasification) is typically assumed to be revealed after

pre-training is performed, and is often expensive to obtain labeled data for. Self-supervised learning (SSL)

is a particular kind of pre-training that only uses unlabeled data. We now describe the idea of representation

learning that is central to our theoretical formalization.

1.1.1 Representation learning

A recurring theme in self-supervised learning, and deep learning in general, is the idea of representation

learning [Bengio et al., 2013]. The goal is to learn a mapping from inputs (e.g. text, images) to vectors, such

that simple operations on these vectors reveal interesting properties of the input, e.g. inner products between

representations of two inputs can encode some notion of semantic similarity. Learning such representations can

help a learner transfer “knowledge and skills” from a pre-training task to the downstream task. In practice,

low-dimensional representations extracted from some layer(s) of a model pre-trained with self-supervised

learning (see Figure 1.1a) can often solve downstream tasks by just learning linear classifiers on top of them.

The low-dimensionality of these representations often helps solving the downstream task with very few labeled

3

(a) Representation function (b) Linear classification

Figure 1.1: Representations from the final (or an intermediate) layer can be extracted from a network that
is pre-trained using self-supervised learning. This can be used to solve a downstream classification task by
using the available labeled data to learn a linear classifier separating representations from different classes.
This idea, also referred to as head tuning, leads to good performance on many downstream tasks.

samples. The key question that arises here in the context of self-supervised learning is:

Why are low-dimensional representations, learned by solving a self-supervised learning task,

able to solve downstream tasks with linear classifiers?

We denote a representation function f as a mapping from inputs x from any domain X to d-dimensional vectors,

i.e. f : X → Rd. The quality of a learned representation is evaluated by its performance on a certain down-

stream tasks of interest. In this thesis we focus our attention on the downstream task of classification.

1.1.2 Downstream classification task

The goal of a classification task is to map an input x to one of many classes. For a given classification task T ,

we evaluate a representation through the minimimum classification error achievable by a (learned) linear

classifier on top of the representation f . This is roughly defined1 as follows:

Lclf(f ; T) := min
W

Lclf(W ◦ f ; T) (Downstream linear classification)

The linear classifier is typically learned by using the little labeled data that is available for the task T ,

as denoted in Figure 1.1. The goal of self-supervised learning, in the context of this thesis, is to learn a

representation f using unlabeled data that can help with the above metric Lclf.

1Precise definitions and notations are deferred to individual chapters.

4

1.1.3 Self-supervised learning task

We formalize the goal of a self-supervised learning (SSL) task as learning a representation function f . As is

ubiquitous in deep learning, we set up this task as the minimization of an objective function as follows:

minimizef∈F Lssl(f) using algorithm A (Self-supervised learning)

where F is a class of representation functions accounting for model architecture (e.g. ResNet-18 [He et al.,

2016]) and A denotes a training algorithm (e.g. stochastic gradient descent, Adam) that is used to learn f .

The SSL methods that we consider can all be interpreted as some objective minimization. For instance, one

way to phrase a self-prediction task of predicting one part of an input (x2) from the rest of it (x1) is through

the following objective function:

Lssl(f) = E
(x1,x2)

[
∥x2 − f(x1)∥22

]
(1.1)

Given any formalization of SSL, an important question to ask is, “What is a good SSL task?” We use the

intuitive characterization that an SSL task is “good” if doing very well on the SSL task can guarantee doing

well on a downstream task of interest. Given the above objective minimization formalization of an SSL task,

we distill the non-trivial question about why SSL is beneficial as follows:

Why should approximately minimizing Lssl (using F & A) lead to good performance on Lclf?

We now discuss our theoretical guarantees in the context of the above question.

1.1.4 Assumptions and guarantees

Since the unlabeled data used in Lssl has no access to downstream labels, it is a priori unclear why minimizing

Lssl should help with the evaluation metric of Lclf that uses labels. In fact answering the question in full

generality may not even be possible. For instance, there is no apparent reason why achieving fluency in

reading books in English should help with a downstream task of excelling at badminton. However it is

intuitively clear that working on fitness, muscle strength and reflexes can indeed help with learning badminton

quicker. Thus it is essential to establish some connection between the SSL task and the downstream task in

order to have any hope of theoretically studying the benefit of SSL. As alluded to earlier, we do so by making

assumptions about the unlabeled data distribution and the downstream task. Motivated by this idea, we

5

present an informal version of the results that are shown for various SSL methods.

Informal Theorem 1.1.1. Under appropriate assumptions on the unlabeled data distribution and the

downstream task, we show that an SSL task is useful through one or both the following results:

(a) Any approximate minimizer of Lssl is good for Lclf, i.e.

Lssl(f) ≤ inf
f⋆
Lssl(f

⋆) + ϵ =⇒ Lclf(f) ≤ g(ϵ), ∀f (1.2)

(b) Any approximate minimizer of Lssl, within the class F , is good for Lclf, i.e.

Lssl(f) ≤ inf
f⋆∈F

Lssl(f
⋆) + ϵ =⇒ Lclf(f) ≤ gF (ϵ), ∀f ∈ F (1.3)

where g and gF are non-decreasing functions with a small value at ϵ = 0.

The above result suggests that under an appropriate connection between the unlabeled data distribution and

the downstream task (similar to the badminton example from above), doing well on the SSL objective Lssl is

indeed indicative of doing well on the downstream evaluation Lclf. The function g(ϵ) (or gF (ϵ)) is monotonic

and captures the effect of sub-optimality in Lssl to Lclf. Quantifying such robustness is important because

in practice we can never hope to learn an exact minimizer of Lssl, due to use of finite amount of labeled

data and optimization imperfections. Result (b) differs from (a) in that it considers representation function

class into account as well, rather than treating f as a black-box, and this can sometimes be crucial to show

non-vacuous guarantees.

The above formalization forms the basis of our study of various SSL methods. The goal, for various SSL

methods, is to identify key properties of the unlabeled data distribution and the objective function Lssl that

can provably lead to SSL being useful for a downstream task. We note that the precise assumptions required

to mathematically study this question may not be perfectly satisfied in practice. However the hope is that a

deeper mathematical understanding can help provide a new set of insights to develop better self-supervised

learning methods. A quote, attributed to the statistician George Box [Box, 1976], that best captures this

philosophy is, “all models are wrong, but some are useful”. With this backdrop, we provide an overview of

the various parts and chapters in the rest of the thesis.

6

1.2 Overview of contributions

The thesis is divided into three parts, corresponding to different self-supervised learning methods that we

study: contrastive learning, self-prediction and language modeling.

1.2.1 Contrastive learning

In Part I we study the method of contrastive learning, where idea is to learn representations using unlabeled

data that can encode some notion of semantic similarity through operations like inner products. The data for

semantic similarity is directly obtained from unlabeled data, without access to downstream labels. More

precisely, the goal is to learn representation f that can contrast similar pairs of points (x, x+) from random

pairs of points (x, x−). A simple objective function that achieves this goal is the following:

Lssl(f) = E
(x,x+),x−

[
log
(

1 + e−f(x)
⊤f(x+)+f(x)⊤f(x−)

)]
(1.4)

where f(x)⊤f(x+) is encouraged to be higher than f(x)⊤f(x−). Such representations turn out to be very

effective at solving classification tasks with linear classifiers, with utility in many domains like text, images,

speech, graph data, etc.

This part contains two chapters, motivated by different strategies to obtain similar pairs (x, x+) from unlabeled

data. The two different settings highlight the role of two important factors for the success of contrastive

learning: unlabeled data distribution and inductive biases of the function class F .

Role of data distributions. One idea to generate similar pairs is to leverage temporal similarity, e.g.

consecutive words/sentences in a text corpus or nearby frames in a video can be treated as similar. This

motivates our study of contrastive learning in Chapter 2, based on our published paper [Arora et al., 2019].

In this chapter, we provide a formalization for the notion of semantic similarity that implicitly connects it to

the downstream classes of interest. More precisely, we do it through a conditional independence assumption:

similar pairs from unlabeled data are assumed to be conditionally independent on the latent classes of

interest. Under this assumption, we show a guarantee similar to Equation (1.2) where for any representation

f , Lclf(f) = O(Lssl(f)). This result provides the first formalization, to the best of our knowledge, of when

and why an SSL method like contrastive learning can help with downstream tasks.

7

Role of inductive biases of function class. Chapter 3 delves into contrastive learning with data augmen-

tations, where a similar pair of data points is obtained by sampling two transformations (or augmentations)

of the same input. For this setting, we discuss why existing theoretical analyses fail to capture the full power

of contrastive learning. In particular, we argue that the earlier assumptions required on the augmentations

are neither necessary nor realistic for many data augmentations used in practice. We identify a disjoint

augmentation setting where any analysis that has the form of Equation (1.2) (which subsumes existing

analyses) will provably fail, despite the practical success of contrastive learning in many such settings. Instead

we argue that it is important to incorporate the inductive biases of the function class into the analysis, akin

to Equation (1.3) to get non-vacuous guarantees. This chapter is based on [Saunshi et al., 2022].

1.2.2 Self-prediction methods

In Chapter 4 we study a class of methods that are broadly termed as self-prediction based methods, based

on the paper [Lee et al., 2021]. The idea is to use unlabeled data to set up a task that requires a model

to predict part of an input from the rest of it. Examples of this include predicting missing words in a

sentence from the rest of it, or predicting a missing patch in an image from the rest of it. Equation (1.1)

provides a simple formalization of this idea as an objective function. In our analysis, we show that an

approximate conditional independence assumption on the observed and unobserved components can lead to

representations that can help with good downstream linear classification performance. We show guarantees

like Equation (1.2) that treat the representation as a black-box, and also show guarantees like Equation (1.3)

for a linear representation function class. This work not only helps us relax the conditional independence

assumption from earlier, but also allows us to study a broader class of SSL methods.

1.2.3 Language modeling

Chapter 5 explores the idea of auto-regressive language modeling and its impressive successes on solving

downstream NLP tasks. The goal of language modeling is to model the distribution of natural language

by solving the task of next word prediction, i.e. given a context (partial sentence), predict a distribution

over the possible next words that form meaningful completions for the context. This simple idea of next

word prediction leads to models with very impressive performances on many downstream NLP tasks. The

intuitive reasoning for this success is that next word prediction is a difficult task and requires a good degree

of language understanding, which can potentially help with solving downstream tasks. We mathematically

formalize this intuition for the downstream task of sentence classification. More precisely, we argue and verify

8

experimentally, that many classification tasks of interest can be rephrased as sentence completion problems

through the use of prompts. We mathematically formalize such tasks as natural classification tasks and

show how an near optimal language model can lead to representations with good downstream performance,

showing guarantees like Equation (1.2) for arbitary language models and guarantees like Equation (1.3) for

softmax-based language models. This work is based on the paper [Saunshi et al., 2021]

1.3 Previously published work

Chapter 2 contains joint work with Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak and Orestis

Plevrakis, which was previously published in ICML 2019 [Arora et al., 2019].

Chapter 3 contains joint work with Sanjeev Arora, Jordan T. Ash, Surbhi Goel, Sham Kakade, Akshay

Krishnamurthy, Dipendra Misra and Cyril Zhang, which was previously published in ICML 2022 Saunshi

et al. [2022].

Chapter 4 contains joint work with Jason Lee, Qi Lei and Jiacheng Zhou, which was previously published in

NeurIPS 2021 Lee et al. [2021].

Chapter 5 contains joint work with Sanjeev Arora and Sadhika Malladi, which was previously published in

ICLR 2021 Saunshi et al. [2021].

9

Part I

Contrastive Learning

10

Chapter 2

A Theoretical Analysis of Contrastive

Unsupervised Representation

Learning

In this chapter, we study the class of self-supervised learning methods that are reminiscent of the well-known

word2vec embedding algorithm: leveraging availability of pairs of semantically “similar” data points and

“negative samples,” the learner forces the inner product of representations of similar pairs with each other to

be higher on average than with negative samples. We use the term contrastive learning for such algorithms

and present a theoretical framework for analyzing them by introducing latent classes and hypothesizing

that semantically similar points are sampled from the same latent class. This framework allows us to show

provable guarantees on the performance of the learned representations on the average classification task

that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that

learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled

experiments in both the text and image domains to support the theory. This chapter is based on previously

published work [Arora et al., 2019].

11

2.1 Introduction

Good quality representations for data are ubiquitous in machine learning. In natural language processing

(NLP), low-dimensional representations of text – called text embeddings – have been computed with unlabeled

data Peters et al. [2018], Devlin et al. [2019]. Often the embedding function is trained by using the embedding

of a piece of text to predict the surrounding text Kiros et al. [2015], Logeswaran and Lee [2018], Pagliardini

et al. [2018]. Similar methods that leverage similarity in nearby frames in a video clip have had some success

for images as well Wang and Gupta [2015].

Many of these algorithms are related: they assume access to pairs or tuples (in the form of co-occurrences)

of text/images that are more semantically similar than randomly sampled text/images, and their objective

forces representations to respect this similarity on average. For instance, in order to learn a representation

function f for sentences, a simplified version of what Logeswaran and Lee [2018] minimize is the following

loss function

E
x,x+,x−

[
− log

(
ef(x)

T f(x+)

ef(x)
T f(x+) + ef(x)

T f(x−)

)]

where (x, x+) are a similar pair and x− is presumably dissimilar to x (often chosen to be a random point)

and typically referred to as a negative sample. Though reminiscent of past ideas – e.g. kernel learning, metric

learning, co-training Cortes et al. [2010], Bellet et al. [2013], Blum and Mitchell [1998] – these algorithms lack

a theoretical framework quantifying when and why they work. While it seems intuitive that minimizing such

loss functions should lead to representations that capture ‘similarity,’ formally it is unclear why the learned

representations should do well on downstream linear classification tasks – their somewhat mysterious success

is often treated as an obvious consequence. To analyze this success, a framework must connect ‘similarity’ in

unlabeled data with the semantic information that is implicitly present in downstream tasks.

We propose the term Contrastive Learning for such methods and provide a new conceptual framework with

minimal assumptions1. Our main contributions are the following:

1. We formalize the notion of semantic similarity by introducing latent classes. Similar pairs are assumed

to be drawn from the same latent class. A downstream task is comprised of a subset of these latent

classes.

2. Under this formalization, we prove that a representation function f learned from a function class

1The alternative would be to make assumptions about generative models of data. This is difficult for images and text.

12

F by contrastive learning has low average linear classification loss if F contains a function with low

unsupervised loss. Additionally, we show a generalization bound for contrastive learning that depends

on the Rademacher complexity of F . After highlighting inherent limitations of negative sampling, we

show sufficient properties of F which allow us to overcome these limitations.

3. Using insights from the above framework, we provide a novel extension of the algorithm that can

leverage larger blocks of similar points than pairs, has better theoretical guarantees, and performs

better in practice.

Ideally, one would like to show that contrastive learning always gives representations that compete with

those learned from the same function class with plentiful labeled data. Our formal framework allows a

rigorous study of such questions: we show a simple counterexample that prevents such a blanket statement

without further assumptions. However, if the representations are well-concentrated and the mean classifier

(Definition 2.2.1) has good performance, we can show a weaker version of the ideal result (Corollary 2.5.2).

Sections 2.2 and 2.3 give an overview of the framework and the results, and subsequent sections deal with the

analysis. Related work is discussed in Section 2.7 and Section 2.8 describes experimental verification and

support for our framework.

2.2 Framework for contrastive learning

We first set up notation and describe the framework for unlabeled data and classification tasks that will be

essential for our analysis. Let X denote the set of all possible data points. Contrastive learning assumes

access to similar data in the form of pairs (x, x+) that come from a distribution Dsim as well as k i.i.d.

negative samples x−1 , x
−
2 , . . . , x

−
k from a distribution Dneg that are presumably unrelated to x. Learning is

done over F , a class of representation functions f : X → Rd, such that ∥f(·)∥ ≤ R for some R > 0, where we

use ∥ · ∥ to denote the ℓ2 norm ∥ · ∥2 unless specified otherwise.

Latent classes

To formalize the notion of semantically similar pairs (x, x+), we introduce the concept of latent classes.

Let C denote the set of all latent classes. Associated with each class c ∈ C is a probability distribution Dc over

X .

13

Roughly, Dc(x) captures how relevant x is to class c. For example, X could be natural images and c the

class “dog” whose associated Dc assigns high probability to images containing dogs and low/zero probabilities

to other images. Classes can overlap arbitrarily.2 Finally, we assume a distribution ρ over the classes that

characterizes how these classes naturally occur in the unlabeled data. Note that we make no assumption

about the functional form of Dc or ρ.

Semantic similarity

To formalize similarity, we assume similar data points x, x+ are i.i.d. draws from the same class distribution

Dc for some class c picked randomly according to measure ρ. Negative samples are drawn from the marginal

of Dsim:

Dsim(x, x+) = E
c∼ρ
Dc(x)Dc(x+) (2.1)

Dneg(x−) = E
c∼ρ
Dc(x−) (2.2)

Since classes are allowed to overlap and/or be fine-grained, this is a plausible formalization of “similarity.”

As the identity of the class in not revealed, we call it unlabeled data. Currently empirical works heuristically

identify such similar pairs from co-occurring image or text data.

Supervised tasks

We now characterize the tasks that a representation function f will be tested on. A (k + 1)-way3 supervised

task T consists of distinct classes {c1, . . . , ck+1} ⊆ C. The labeled dataset for the task T consists of m i.i.d.

draws from the following process:

A label c ∈ {c1, ..., ck+1} is picked according to a distribution DT . Then, a sample x is drawn from Dc.

Together they form a labeled pair (x, c) with distribution

DT (x, c) = Dc(x)DT (c) (2.3)

A key subtlety in this formulation is that the classes in downstream tasks and their associated data distributions

Dc are the same as in the unlabeled data. This provides a path to formalizing how capturing similarity in

2An image of a dog by a tree can appear in both Ddog & Dtree.
3We use k as the number of negative samples later.

14

unlabeled data can lead to quantitative guarantees on downstream tasks. DT is assumed to be uniform4 for

theorems in the main paper.

Evaluation metric for representations

The quality of the representation function f is evaluated by its performance on a multi-class classification

task T using linear classification. For this subsection, we fix a task T = {c1, ..., ck+1}. A multi-class classifier

for T is a function g : X → Rk+1 whose output coordinates are indexed by the classes c in task T .

The loss incurred by g on point (x, y) ∈ X × T is defined as ℓ({g(x)y − g(x)y′}y′ ̸=y), which is a function of a

k-dimensional vector of differences in the coordinates. The two losses we will consider in this work are the

standard hinge loss ℓ(v) = max{0, 1 + maxi{−vi}} and the logistic loss ℓ(v) = log2 (1 +
∑
i exp(−vi)) for

v ∈ Rk. Then the supervised loss of the classifier g is

Lsup(T , g) := E
(x,c)∼DT

[
ℓ
(
{g(x)c − g(x)c′}c′ ̸=c

)]
To use a representation function f with a linear classifier, a matrix W ∈ R(k+1)×d is trained and g(x) = Wf(x)

is used to evaluate classification loss on tasks. Since the best W can be found by fixing f and training a

linear classifier, we abuse notation and define the supervised loss of f on T to be the loss when the best W is

chosen for f :

Lsup(T , f) = inf
W∈R(k+1)×d

Lsup(T ,Wf) (2.4)

Crucial to our results and experiments will be a specific W where the rows are the means of the representations

of each class which we define below.

Definition 2.2.1 (Mean Classifier). For a function f and task T = (c1, . . . , ck+1), the mean classifier

is Wµ whose cth row is the mean µc of representations of inputs with label c: µc := E
x∼Dc

[f(x)]. We use

Lµsup(T , f) := Lsup(T ,Wµf) as shorthand for its loss.

Since contrastive learning has access to data with latent class distribution ρ, it is natural to have better

guarantees for tasks involving classes that have higher probability in ρ.

4We state and prove the general case in the Appendix.

15

Definition 2.2.2 (Average Supervised Loss). Average loss for a function f on (k+ 1)-way tasks is defined as

Lsup(f) := E
{ci}k+1

i=1 ∼ρk+1

[
Lsup({ci}k+1

i=1 , f) | ci ̸= cj
]

The average supervised loss of its mean classifier is

Lµsup(f) := E
{ci}k+1

i=1 ∼ρk+1

[
Lµsup({ci}k+1

i=1 , f) | ci ̸= cj
]

Contrastive learning algorithm

We describe the training objective for contrastive learning: the choice of loss function is dictated by the ℓ used

in the supervised evaluation, and k denotes number of negative samples used for training. Let (x, x+) ∼ Dsim,

(x−1 , .., x
−
k) ∼ Dkneg as defined in Equations (2.1) and (2.2).

Definition 2.2.3 (Unsupervised Loss). The population loss is

Lun(f) := E
[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}k
i=1

)]
(2.5)

and its empirical counterpart with M samples (xj , x
+
j , x

−
j1, ..., x

−
jk)Mj=1 from Dsim ×Dkneg is

L̂un(f) =
1

M

M∑
j=1

ℓ
({
f(xj)

T
(
f(x+j)− f(x−ji)

)}k
i=1

)
(2.6)

Note that, by the assumptions of the framework described above, we can now express the unsupervised loss

as

Lun(f) = E
c+,c−i
∼ρk+1

E
x,x+∼D2

c+

x−
i ∼D

c
−
i

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)})]

The algorithm to learn a representation function from F is to find a function f̂ ∈ arg minf∈F L̂un(f) that

minimizes the empirical unsupervised loss. This function f̂ can be subsequently used for supervised linear

classification tasks. In the following section we proceed to give an overview of our results that stem from this

framework.

16

2.3 Overview of analysis and results

What can one provably say about the performance of f̂? As a first step we show that Lun is like a “surrogate”

for Lsup by showing that Lsup(f) ≤ αLun(f),∀f ∈ F , suggesting that minimizing Lun makes sense. This

lets us show a bound on the supervised performance Lsup(f̂) of the representation learned by the algorithm.

For instance, when training with one negative sample, the performance on average binary classification has

the following guarantee:

Theorem 2.4.1 (Informal binary version).

Lsup(f̂) ≤ αLun(f) + η GenM + δ ∀f ∈ F

where α, η, δ are constants depending on the distribution ρ and GenM → 0 as M →∞. When ρ is uniform

and |C| → ∞, we have that α, η → 1, δ → 0.

At first glance, this bound seems to offer a somewhat complete picture: When the number of classes is large,

if the unsupervised loss can be made small by F , then the supervised loss of f̂ , learned using finite samples, is

small.

While encouraging, this result still leaves open the question: Can Lun(f) indeed be made small on reasonable

datasets using function classes F of interest, even though the similar pair and negative sample can come

from the same latent class? We shed light on this by upper-bounding Lun(f) by two components: (a) the

loss L̸=
un(f) for the case where the positive and negative samples are from different classes; (b) a notion of

deviation s(f), within each class.

Theorem 2.4.6 (Informal binary version).

Lsup(f̂) ≤ L̸=
un(f) + βs(f) + η GenM ∀f ∈ F

for constants β, η that depend on the distribution ρ. Again, when ρ is uniform and |C| → ∞ we have

β → 0, η → 1.

This bound lets us infer the following: if the class F is rich enough to contain a function f for which

L̸=
un(f) + βs(f) is low, then f̂ has high supervised performance. Both L̸=

un(f) and s(f) can potentially be

made small for rich enough F .

17

Ideally, however, one would want to show that f̂ can compete on classification tasks with every f ∈ F

(Ideal Result): Lsup(f̂) ≤ αLsup(f) + η GenM (2.7)

Unfortunately, we show in Section 2.5.1 that the algorithm can pick something far from the optimal f .

However, we extend Theorem 2.4.6 to a bound similar to Equation (2.7) (where the classification is done

using the mean classifier) under assumptions about the intraclass concentration of f and about its mean

classifier having high margin.

Sections 2.6.1 and 2.6.2 extend our results to the more complicated setting where the algorithm uses k

negative samples Equation (2.5) and note an interesting behavior: increasing the number of negative samples

beyond a threshold can hurt the performance. In Section 2.6.3 we show a novel extension of the algorithm that

utilizes larger blocks of similar points. Finally, we perform controlled experiments in Section 2.8 to validate

components of our framework and corroborate our suspicion that the mean classifier of representations learned

using labeled data has good classification performance.

2.4 Guaranteed average binary classification

To provide the main insights, we prove the algorithm’s guarantee when we use only 1 negative sample (k = 1).

For this section, let Lsup(f) and Lµsup(f) be as in Definition 2.2.2 for binary tasks. We will refer to the two

classes in the supervised task as well as the unsupervised loss as c+, c−. Let S = {xj , x+j , x
−
j }Mj=1 be our

training set sampled from the distribution Dsim ×Dneg and f̂ ∈ arg minf∈F L̂un(f).

2.4.1 Upper bound using unsupervised loss

Let f|S =
(
ft(xj), ft(x

+
j), ft(x

−
j)
)
j∈[M],t∈[d]

∈ R3dM be the restriction on S for any f ∈ F . Then, the

statistical complexity measure relevant to the estimation of the representations is the following Rademacher

average

RS(F) = E
σ∼{±1}3dM

[
sup
f∈F
⟨σ, f|S⟩

]
Let τ = E

c,c′∼ρ2
1{c = c′} be the probability that two classes sampled independently from ρ are the same.

18

Theorem 2.4.1. With probability at least 1− δ, for all f ∈ F

Lµsup(f̂) ≤ 1

(1− τ)
(Lun(f)− τ) +

1

(1− τ)
GenM

where

GenM = O

RRS(F)

M
+R2

√
log 1

δ

M


Remark 2.4.2. The complexity measure RS(F) is tightly related to the labeled sample complexity of the

classification tasks. For the function class G = {wT f(·)|f ∈ F , ∥w∥ ≤ 1} that one would use to solve a

binary task from scratch using labeled data, it can be shown that RS(F) ≤ dRS(G), where RS(G) is the usual

Rademacher complexity of G on S (Definition 3.1 from Mohri et al. [2018]).

We state two key lemmas needed to prove the theorem.

Lemma 2.4.3. With probability at least 1− δ over the training set S, for all f ∈ F

Lun(f̂) ≤ Lun(f) +GenM

We prove Lemma 2.4.3 in Section 2.10.3.

Lemma 2.4.4. For all f ∈ F

Lµsup(f) ≤ 1

(1− τ)
(Lun(f)− τ)

Proof. The key idea in the proof is the use of Jensen’s inequality. Unlike the unsupervised loss which uses a

random point from a class as a classifier, using the mean of the class as the classifier should only make the

loss lower. Let µc = E
x∼Dc

f(x) be the mean of the class c.

Lun(f) = E
(x,x+)∼Dsim

x−∼Dneg

[
ℓ(f(x)T (f(x+)− f(x−)))

]

=(a) E
c+,c−∼ρ2
x∼Dc+

E
x+∼Dc+

x−∼Dc−

[
ℓ(f(x)T (f(x+)− f(x−)))

]

≥(b) E
c+,c−∼ρ2

E
x∼Dc+

[
ℓ(f(x)T (µc+ − µc−))

]

19

=(c) (1− τ) E
c+,c−∼ρ2

[Lµsup({c+, c−}, f)|c+ ̸= c−] + τ

=(d) (1− τ)Lµsup(f) + τ

where (a) follows from the definitions in Equations (2.1) and (2.2), (b) follows from the convexity of ℓ and

Jensen’s inequality by taking the expectation over x+, x− inside the function, (c) follows by splitting the

expectation into the cases c+ = c− and c+ ̸= c−, from symmetry in c+ and c− in sampling and since classes

in tasks are uniformly distributed (general distributions are handled in Section 2.11.1). Rearranging terms

completes the proof.

Proof of Theorem 2.4.1. The result follows directly by applying Lemma 2.4.4 for f̂ and finishing up with

Lemma 2.4.3.

One could argue that if F is rich enough such that Lun can be made small, then Theorem 2.4.1 suffices.

However, in the next section we explain that unless τ ≪ 1, this may not always be possible and we show one

way to alleviate this.

2.4.2 Price of negative sampling: class collision

Note first that the unsupervised loss can be decomposed as

Lun(f) = τL=
un(f) + (1− τ)L̸=

un(f) (2.8)

where L̸=
un(f) is the loss suffered when the similar pair and the negative sample come from different

classes.

L̸=
un(f) = E

c+,c−∼ρ2
x,x+∼D2

c+

x−∼Dc−

[
ℓ(f(x)T (f(x+)− f(x−)))|c+ ̸= c−

]

and L=
un(f) is when they come from the same class. Let ν be a distribution over C with ν(c) ∝ ρ2(c),

then

L=
un(f) = E

c∼ν
x,x+,x−∼D3

c

[
ℓ(f(x)T (f(x+)− f(x−)))

]

20

≥ E
c∼ν,x∼Dc

[
ℓ(f(x)T (µc − µc))

]
= 1

by Jensen’s inequality again, which implies Lun(f) ≥ τ . In general, without any further assumptions on

f , Lun(f) can be far from τ , rendering the bound in Theorem 2.4.1 useless. However, as we will show, the

magnitude of L=
un(f) can be controlled by the intraclass deviation of f . Let Σ(f, c) the covariance matrix of

f(x) when x ∼ Dc. We define a notion of intraclass deviation as follows:

s(f) := E
c∼ν

[√
∥Σ(f, c)∥2 E

x∼Dc

∥f(x)∥
]

(2.9)

Lemma 2.4.5. For all f ∈ F ,

L=
un(f)− 1 ≤ c′s(f)

where c′ is a positive constant.

We prove Lemma 2.4.5 in Lemma 2.10.1. Theorem 2.4.1 combined with Equation (2.8) and Lemma 2.4.5

gives the following result.

Theorem 2.4.6. With probability at least 1− δ, ∀f ∈ F

Lsup(f̂) ≤ Lµsup(f̂) ≤ L̸=
un(f) + β s(f) + η GenM

where β = c′ τ
1−τ , η = 1

1−τ and c′ is a constant.

The above bound highlights two sufficient properties of the function class for unsupervised learning to work:

when the function class F is rich enough to contain some f with low βs(f) as well as low L̸=
un(f) then f̂ , the

empirical minimizer of the unsupervised loss – learned using sufficiently large number of samples – will have

good performance on supervised tasks (low Lsup(f̂)).

2.5 Towards competitive guarantees

We provide intuition and counter-examples for why contrastive learning does not always pick the best

supervised representation f ∈ F and show how our bound captures these. Under additional assumptions, we

show a competitive bound where classification is done using the mean classifier.

21

2.5.1 Limitations of contrastive learning

The bound provided in Theorem 2.4.6 might not appear as the most natural guarantee for the algorithm.

Ideally one would like to show a bound like the following: for all f ∈ F ,

(Ideal 1): Lsup(f̂) ≤ αLsup(f) + η GenM (2.10)

for constants α, η and generalization error GenM . This guarantees that f̂ is competitive against the best

f on the average binary classification task. However, the bound we prove has the following form: for all

f ∈ F ,

Lµsup(f̂) ≤ αL̸=
un(f) + βs(f) + η GenM

To show that this discrepancy is not an artifact of our analysis but rather stems from limitations of the

algorithm, we present two examples in Figure 2.1. Our bound appropriately captures these two issues

individually owing to the large values of L̸=(f) or s(f) in each case, for the optimal f .

In Figure 2.1a, we see that there is a direction on which f1 can be projected to perfectly separate the classes.

Since the algorithm takes inner products between the representations, it inevitably considers the spurious

components along the orthogonal directions. This issue manifests in our bound as the term L̸=
un(f1) being

high even when s(f1) = 0. Hence, contrastive learning will not always work when the only guarantee we have

is that F can make Lsup small.

This should not be too surprising, since we show a relatively strong guarantee – a bound on Lµsup for the

mean classifier of f̂ . This suggests a natural stronger assumption that F can make Lµsup small (which is

observed experimentally in Section 2.8 for function classes of interest) and raises the question of showing a

bound that looks like the following: for all f ∈ F ,

(Ideal 2): Lµsup(f̂) ≤ αLµsup(f) + ηGenM (2.11)

without accounting for any intraclass deviation – recall that s(f) captures a notion of this deviation in our

bound. However this is not true: high intraclass deviation may not imply high Lµsup(f), but can make L=
un(f)

(and thus Lun(f)) high, resulting in the failure of the algorithm. Consequently, the term s(f) also increases

while L̸=
un does not necessarily have to. This issue, apparent in Figure 2.1b, shows that a guarantee like

22

(a) Mean is bad (b) High intraclass variance

Figure 2.1: In both examples we have uniform distribution over classes C = {c1, c2}, blue and red points
are in c1 and c2 respectively and Dci is uniform over the points of ci. In the first figure we have one point
per class, while in the second we have two points per class. Let F = {f0, f1} where f0 maps all points to
(0, 0) and f1 is defined in the figure. In both cases, using the hinge loss, Lsup(f1) = 0, Lsup(f0) = 1 and in
the second case Lµsup(f1) = 0. However, in both examples the algorithm will pick f0 since Lun(f0) = 1 but
Lun(f1) = Ω(r2).

Equation (2.11) cannot be shown without further assumptions.

2.5.2 Competitive bound via intraclass concentration

We saw that Lµsup(f) being small does not imply low Lµsup(f̂), if f is not concentrated within the classes.

In this section we show that when there is an f that has intraclass concentration in a strong sense (sub-

Gaussianity) and can separate classes with high margin (on average) with the mean classifier, then Lµsup(f̂)

will be low.

Let ℓγ(x) = (1− x
γ)+ be the hinge loss with margin γ and Lµγ,sup(f) be Lµsup(f) with loss function ℓγ .

Lemma 2.5.1. For f ∈ F , if the random variable f(X), where X ∼ Dc, is σ2-sub-Gaussian in every

direction for every class c and has maximum norm R = maxx∈X ∥f(x)∥, then for all ϵ > 0,

L̸=
un(f) ≤ γLµγ,sup(f) + ϵ

where γ = 1 + c′Rσ
√

log R
ϵ and c′ is some constant.

The proof of Lemma 2.5.1 is provided in the Section 2.10.2. Using Lemma 2.5.1 and Theorem 2.4.6, we get

the following:

Corollary 2.5.2. For all ϵ > 0, with probability at least 1− δ, for all f ∈ F ,

Lµsup(f̂) ≤ γ(f)Lµγ(f),sup(f) + βs(f) + ηGenM + ϵ

23

where γ(f) is as defined in Lemma 2.5.1, β = c′ τ
1−τ , η = τ

1−τ and c′ is a constant.

2.6 Multiple negative samples and block similarity

In this section we explore two extensions to our analysis. First, in Section 2.6.1, inspired by empirical works

like Logeswaran and Lee [2018] that often use more than one negative sample for every similar pair, we show

provable guarantees for this case by careful handling of class collision. Additionally, in Section 2.6.2 we show

simple examples where increasing negative samples beyond a certain threshold can hurt contrastive learning.

Second, in Section 2.6.3, we explore a modified algorithm that leverages access to blocks of similar data,

rather than just pairs and show that it has stronger guarantees as well as performs better in practice.

2.6.1 Guarantees for k negative samples

Here the algorithm utilizes k negative samples x−1 , ..., x
−
k drawn i.i.d. from Dneg for every positive sample

pair x, x+ drawn from Dsim and minimizes Equation (2.6). As in Section 2.4, we prove a bound for f̂ of the

following form:

Theorem 2.6.1. (Informal version) For all f ∈ F

Lsup(f̂) ≤ Lµsup(f̂) ≤ αL̸=
un(f) + βs(f) + η GenM

where L̸=
un(f) and GenM are extensions of the corresponding terms from Section 2.4 and s(f) remains

unchanged. The formal statement of the theorem and its proof appears in Section 2.11.1. The key differences

from Theorem 2.4.6 are β and the distribution of tasks in Lsup that we describe below. The coefficient β of

s(f) increases with k, e.g. when ρ is uniform and k ≪ |C|, β ≈ k
|C| .

The average supervised loss that we bound is

Lsup(f̂) := E
T ∼D

[
Lsup(T , f̂)

]

where D is a distribution over tasks, defined as follows: sample k+1 classes c+, c−1 , . . . , c
−
k ∼ ρk+1, conditioned

on the event that c+ does not also appear as a negative sample. Then, set T to be the set of distinct classes

in {c+, c−1 , . . . , c
−
k }. Lµsup(f̂) is defined by using Lµsup(T , f̂).

24

Remark 2.6.2. Bounding Lsup(f̂) directly gives a bound for average (k + 1)-wise classification loss Lsup(f̂)

from Definition 2.2.2, since Lsup(f̂) ≤ Lsup(f̂)/p, where p is the probability that the k + 1 sampled classes

are distinct. For k ≪ |C| and ρ ≈ uniform, these metrics are almost equal.

We also extend our competitive bound from Section 2.5.2 for the above f̂ in Section 2.11.2.

2.6.2 Effect of excessive negative sampling

The standard belief is that increasing the number of negative samples always helps, at the cost of increased

computational costs. In fact for Noise Contrastive Estimation (NCE) Gutmann and Hyvärinen [2010], which

is invoked to explain the success of negative sampling, increasing negative samples has shown to provably

improve the asymptotic variance of the learned parameters. However, we find that such a phenomenon

does not always hold for contrastive learning – larger k can hurt performance for the same inherent reasons

highlighted in Section 2.5.1, as we illustrate next.

When ρ is close to uniform and the number of negative samples is k = Ω(|C|), frequent class collisions can

prevent the unsupervised algorithm from learning the representation f ∈ F that is optimal for the supervised

problem. In this case, owing to the contribution of s(f) being high, a large number of negative samples could

hurt. This problem, in fact, can arise even when the number of negative samples is much smaller than the

number of classes. For instance, if the best representation function f ∈ F groups classes into t “clusters”,5

such that f cannot contrast well between classes from the same cluster, then L̸=
un will contribute to the

unsupervised loss being high even when k = Ω(t). We illustrate, by examples, how these issues can lead to

picking suboptimal f̂ in Section 2.12. Experimental results in Figures 2.2a and 2.2b also suggest that larger

negative samples hurt performance beyond a threshold, confirming our suspicions.

2.6.3 Blocks of similar points

Often a dataset consists of blocks of similar data instead of just pairs: a block consists of x0, x1, . . . xb that are

i.i.d. draws from a class distribution Dc for a class c ∼ ρ. In text, for instance, paragraphs can be thought of

as a block of sentences sampled from the same latent class. How can an algorithm leverage this additional

structure?

We propose an algorithm that uses two blocks: one for positive samples x, x+1 , . . . , x
+
b that are i.i.d. samples

5This can happen when F is not rich enough.

25

from c+ ∼ ρ and another one of negative samples x−1 , . . . x
−
b that are i.i.d. samples from c− ∼ ρ. Our

proposed algorithm then minimizes the following loss:

Lblockun (f) := E
[
ℓ

(
f(x)T

(∑
i f(x+i)

b
−
∑
i f(x−i)

b

))]
(2.12)

To understand why this loss function make sense, recall that the connection between Lµsup and Lun was made

in Lemma 2.4.4 by applying Jensen’s inequality. Thus, the algorithm that uses the average of the positive and

negative samples in blocks as a proxy for the classifier instead of just one point each should have a strictly

better bound owing to the Jensen’s inequality getting tighter. We formalize this intuition below. Let τ be as

defined in Section 2.4.

Proposition 2.6.3. ∀f ∈ F

Lsup(f) ≤ 1

1− τ
(
Lblockun (f)− τ

)
≤ 1

1− τ
(Lun(f)− τ)

This bound tells us that Lblockun is a better surrogate for Lsup, making it a more attractive choice than Lun

when larger blocks are available.6. The algorithm can be extended, analogously to Equation (2.5), to handle

more than one negative block. Experimentally we find that minimizing Lblockun instead of Lun can lead to

better performance and our results are summarized in Section 2.8.2. We defer the proof of Proposition 2.6.3

to Section 2.10.4.

2.7 Related work

The contrastive learning framework is inspired by several empirical works, some of which were mentioned

in the introduction. The use of co-occurring words as semantically similar points and negative sampling

for learning word embeddings was introduced in Mikolov et al. [2013b]. Subsequently, similar ideas have

been used by Logeswaran and Lee [2018] and Pagliardini et al. [2018] for sentences representations and by

Wang and Gupta [2015] for images. Notably the sentence representations learned by the quick thoughts (QT)

method in Logeswaran and Lee [2018] that we analyze has state-of-the-art results on many text classification

tasks. Previous attempts have been made to explain negative sampling Dyer [2014] using the idea of Noise

Contrastive Estimation (NCE) Gutmann and Hyvärinen [2010] which relies on the assumption that the

6Rigorous comparison of the generalization errors is left for future work.

26

data distribution belongs to some known parametric family. This assumption enables them to consider a

broader class of distributions for negative sampling. The mean classifier that appears in our guarantees is of

significance in meta-learning and is a core component of ProtoNets Snell et al. [2017].

Our data model for similarity is reminiscent of the one in co-training Blum and Mitchell [1998]. They assume

access to pairs of “views” with the same label that are conditionally independent given the label. Our

unlabeled data model can be seen as a special case of theirs, where the two views have the same conditional

distributions. However, they additionally assume access to some labeled data (semi-supervised), while we

learn representations using only unlabeled data, which can be subsequently used for classification when

labeled data is presented. Two-stage kernel learning Cortes et al. [2010], Kumar et al. [2012] is similar

in this sense: in the first stage, a positive linear combination of some base kernels is learned and is then

used for classification in the second stage; they assume access to labels in both stages. Similarity/metric

learning Bellet et al. [2012, 2013] learns a linear feature map that gives low distance to similar points and

high to dissimilar. While they identify dissimilar pairs using labels, due to lack of labels we resort to negative

sampling and pay the price of class collision. While these works analyze linear function classes, we can handle

arbitrarily powerful representations. Learning of representations that are broadly useful on a distribution of

tasks is done in multitask learning, specifically in the learning-to-learn model Maurer et al. [2016] but using

labeled data.

Recently Hazan and Ma [2016] proposed “assumption-free” methods for representation learning via MDL/compression

arguments, but do not obtain any guarantees comparable to ours on downstream classification tasks. As

noted by Arora and Risteski [2017], this compression approach has to preserve all input information (e.g.

preserve every pixel of the image) which seems suboptimal.

2.8 Experimental results

We report experiments in text and vision domains supporting our theory. Since contrastive learning has

already shown to obtain state-of-the-art results on text classification by quick thoughts (QT) in Logeswaran

and Lee [2018], most of our experiments are conducted to corroborate our theoretical analysis. We also show

that our extension to similarity blocks in Section 2.6.3 can improve QT on a real-world task.

Datasets: Two datasets were used in the controlled experiments. (1) The CIFAR-100 dataset Krizhevsky

[2009] consisting of 32x32 images categorized into 100 classes with a 50000/10000 train/test split. (2) Lacking

27

Table 2.1: Performance of supervised and unsupervised representations on average k-wise classification tasks
(avg-k) and for comparison, on full multiclass (top-r) which is not covered by our theory. Classifier can
have a trained output layer (Tr), or the mean classifier (µ) of Definition 2.2.1, with µ-5 indicating the mean
was computed using only 5 labeled examples.

Supervised Unsupervised
Tr µ µ-5 Tr µ µ-5

Wiki-3029

avg-2 97.8 97.7 97.0 97.3 97.7 96.9

avg-10 89.1 87.2 83.1 88.4 87.4 83.5

top-10 67.4 59.0 48.2 64.7 59.0 45.8

top-1 43.2 33.2 21.7 38.7 30.4 17.0

CIFAR-100

avg-2 97.2 95.9 95.8 93.2 92.0 90.6

avg-5 92.7 89.8 89.4 80.9 79.4 75.7

top-5 88.9 83.5 82.5 70.4 65.6 59.0

top-1 72.1 69.9 67.3 36.9 31.8 25.0

200 400 600 800 1000
Unlabeled data

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Ac
cu

ra
cy

k=1
k=2
k=4
k=10

(a) CIFAR-100

50 100 150 200 250 300 350 400
Unlabeled data

8

10

12

14

16

18

20

22

24

Ac
cu

ra
cy

k=1
k=4
k=8
k=50

(b) Wiki-3029

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

Unsup train loss
Unsup test loss
Sup loss

(c) Wiki-3029

Figure 2.2: Effect of amount of unlabeled data and # of negative samples on unsupervised representations,
measured on binary classification for CIFAR100 in (a) and on top-1 performance on Wiki-3029 in Fig (b)
(top-1 performance is used because avg binary was same for all k). Fig. (c) shows the dynamics of train/test
loss; supervised loss roughly tracks unsupervised test loss, as suggested by Theorem 2.4.1

an appropriate NLP dataset with large number of classes, we create the Wiki-3029 dataset, consisting of

3029 Wikipedia articles as the classes and 200 sentences from each article as samples. The train/dev/test

split is 70%/10%/20%. To test our method on a more standard task, we also use the unsupervised part

of the IMDb review corpus Maas et al. [2011], which consists of 560K sentences from 50K movie reviews.

Representations trained using this corpus are evaluated on the supervised IMDb binary classification task,

consisting of training and testing set with 25K reviews each.

2.8.1 Controlled experiments

To simulate the data generation process described in Section 2.2, we generate similar pairs (blocks) of

data points by sampling from the same class. Dissimilar pairs (negative samples) are selected randomly.

Contrastive learning was done using our objectives Equation (2.5), and compared to performance of standard

28

Table 2.2: Effect of larger block size on representations. For CIFAR-100 and Wiki-3029 we measure the
average binary classification accuracy. IMDb representations are tested on IMDb supervised task. CURL is
our large block size contrastive method, QT is the algorithm from Logeswaran and Lee [2018]. For larger
block sizes, QT uses all pairs within a block as similar pairs. We use the same GRU architecture for both
CURL and QT for a fair comparison.

Dataset Method b = 2 b = 5 b = 10

CIFAR-100 CURL 88.1 89.6 89.7
Wiki-3029 CURL 96.6 97.5 97.7

IMDb
CURL 89.2 89.6 89.7
QT 86.5 87.7 86.7

supervised training, with both using the same architecture for representation f . For CIFAR-100 we use

VGG-16 Simonyan and Zisserman [2014] with an additional 512x100 linear layer added at the end to make

the final representations 100 dimensional, while for Wiki-3029 we use a Gated Recurrent Network (GRU)

Chung et al. [2015] with output dimension 300 and fix the word embedding layer with pretrained GloVe

embeddings Pennington et al. [2014]. The unsupervised model for CIFAR-100 is trained with 500 blocks of

size 2 with 4 negative samples, and for Wiki-3029 we use 20 blocks of size 10 with 8 negative samples. We

test (1) learned representations on average tasks by using the mean classifier and compare to representations

trained using labeled data; (2) the effect of various parameters like amount of unlabeled data (N)7, number

of negative samples (k) and block size (b) on representation quality; (3) whether the supervised loss tracks

the unsupervised loss as suggested by Theorem 2.4.1; (4) performance of the mean classifier of the supervised

model.

Results: These appear in Table 2.1. For Wiki-3029 the unsupervised performance is very close to the

supervised performance in all respects, while for CIFAR-100 the avg-k performance is respectable, rising to

good for binary classification. One surprise is that the mean classifier, central to our analysis of unsupervised

learning, performs well also with representations learned by supervised training on CIFAR-100. Even the

mean computed by just 5 labeled samples performs well, getting within 2% accuracy of the 500 sample mean

classifier on CIFAR-100. This suggests that representations learnt by standard supervised deep learning are

actually quite concentrated. We also notice that the supervised representations have fairly low unsupervised

training loss (as low as 0.4), even though the optimization is minimizing a different objective.

To measure the sample complexity benefit provided by contrastive learning, we train the supervised model on

7If we used M similar blocks of size b and k negative blocks for each similar block, N = Mb(k + 1). In practice, however, we
reuse the blocks for negative sampling and lose the factor of k + 1.

29

just 10% fraction of the dataset and compare it with an unsupervised model trained on unlabeled data whose

mean classifiers are computed using the same amount of labeled data. We find that the unsupervised model

beats the supervised model by almost 4% on the 100-way task and by 5% on the average binary task when

only 50 labeled samples are used.

Figure 2.2 highlights the positive effect of increasing number of negative samples as well as amount of data

used by unsupervised algorithm. In both cases, using a lot of negative examples stops helping after a point,

confirming our suspicions in Section 2.6.2. We also demonstrate how the supervised loss tracks unsupervised

test loss in Figure 2.2c.

2.8.2 Effect of block size

As suggested in Section 2.6.3, a natural extension to the model would be access to blocks of similar points.

We refer to our method of minimizing the loss in Equation (2.12) as CURL for Contrastive Unsupervised

Representation Learning and perform experiments on CIFAR-100, Wiki-3029, and IMDb. In Table 2.2 we see

that for CIFAR-100 and Wiki-3029, increasing block size yields an improvement in classification accuracy.

For IMDb, as is evident in Table 2.2, using larger blocks provides a clear benefit and the method does better

than QT, which has state-of-the-art performance on many tasks. A thorough evaluation of CURL and its

variants on other unlabeled datasets is left for future work.

2.9 Conclusion

Contrastive learning methods have been empirically successful at learning useful feature representations.

We provide a new conceptual framework for thinking about this form of learning, which also allows us to

formally treat issues such as guarantees on the quality of the learned representations. The framework gives

fresh insights into what guarantees are possible and impossible, and shapes the search for new assumptions

to add to the framework that allow tighter guarantees. The framework currently ignores issues of efficient

minimization of various loss functions, and instead studies the interrelationships of their minimizers as well

as sample complexity requirements for training to generalize, while clarifying what generalization means in

this setting. Our approach should be viewed as a first cut; possible extensions include allowing tree structure

– more generally metric structure – among the latent classes. Connections to meta-learning and transfer

learning may arise.

30

We use experiments primarily to illustrate and support the new framework. But one experiment on sentence

embeddings already illustrates how fresh insights derived from our framework can lead to improvements

upon state-of-the-art models in this active area. We hope that further progress will follow, and that our

theoretical insights will begin to influence practice, including design of new heuristics to identify semantically

similar/dissimilar pairs.

31

2.10 Deferred proofs

2.10.1 Class collision lemma

We prove a general Lemma, from which Lemma 2.4.5 can be derived directly.

Lemma 2.10.1. Let c ∈ C and ℓ : Rt → R be either the t-way hinge loss or t-way logistic loss, as defined in

Section 2.2. Let x, x+, x−1 , ..., x
−
t be iid draws from Dc. For all f ∈ F , let

L=
un,c(f) = E

x,x+,x−
i

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}t
i=1

)]

Then

L=
un,c(f)− ℓ(⃗0) ≤ c′t

√
∥Σ(f, c)∥2 E

x∼Dc

[∥f(x)∥] (2.13)

where c′ is a positive constant.

Lemma 2.4.5 is a direct consequence of the above Lemma, by setting t = 1 (which makes ℓ(0) = 1), taking an

expectation over c ∼ ν in Equation (2.13) and noting that Ec∼ν [L=
un,c(f)] = L=

un(f).

Proof of Lemma 2.10.1. Fix an f ∈ F and let zi = f(x)T
(
f(x−i)− f(x+)

)
and z = maxi∈[t] zi. First, we

show that L=
un,c(f) − ℓ(⃗0) ≤ c′E[|z|], for some constant c′. Note that E[|z|] = P[z ≥ 0]E[z|z ≥ 0] + P[z ≤

0]E[−z|z ≤ 0] ≥ P[z ≥ 0]E[z|z ≥ 0].

t-way hinge loss: By definition ℓ(v) = max{0, 1 + maxi∈[t]{−vi}}. Here, L=
un,c(f) = E[(1 + z)+] ≤

E[max{1 + z, 1}] = 1 + P[z ≥ 0]E[z|z ≥ 0] ≤ 1 + E[|z|].

t-way logistic loss: By definition ℓ(v) = log2(1 +
∑t
i=1 e

−vi), we have L=
un,c(f) = E[log2(1 +

∑
i e
zi)] ≤

E[log2(1 + tez)] ≤ max{ z
log 2 + log2(1 + t), log2(1 + t)} = P[z≥0]E[z|z≥0]

log 2 + log2(1 + t) ≤ E[|z|]
log 2 + log2(1 + t).

Finally, E[|z|] ≤ E[maxi∈[t] |zi|] ≤ tE[|z1|]. But,

E[|z1|] = Ex,x+,x−
1

[∣∣f(x)T
(
f(x−1)− f(x+)

)∣∣]
≤ Ex

∥f(x)∥

√√√√Ex+,x−
1

[(
f(x)T

∥f(x)∥
(
f(x−1)− f(x+)

))2
] ≤ √2

√
∥Σ(f, c)∥2 E

x∼Dc

[∥f(x)∥]

32

2.10.2 Proof of Lemma 2.5.1

Fix an f ∈ F and suppose that within each class c, f is σ2-subgaussian in every direction. 8 Let

µc = E
x∼Dc

[f(x)]. This means that for all c ∈ C and unit vectors v, for x ∼ Dc, we have that vT (f(x)− µc)

is σ2-subgaussian. Let ϵ > 0 and γ = 1 + 2Rσ
√

2 logR+ log 3/ϵ. 9 Consider fixed c+, c−, x and let

f(x)T (f(x−)− f(x+)) = µ+ z, where

µ = f(x)T (µc− − µc+) and z = f(x)T
(
f(x−)− µc−

)
− f(x)T

(
f(x+)− µc+

)
For x+ ∼ D+

c , x− ∼ D−
c independently, z is the sum of two independent R2σ2-subgaussians (x is fixed), so

z is 2R2σ2-subgaussian and thus p = Pr[z ≥ γ − 1] ≤ e−
4R2σ2(2 log R+log 3/ϵ)

4R2σ2 = ϵ
3R2 . So, Ez[(1 + µ + z)+] ≤

(1− p)(γ + µ)+ + p(2R2 + 1) ≤ γ(1 + µ
γ)+ + ϵ (where we used that µ+ z ≤ 2R2). By taking expectation over

c+, c− ∼ ρ2, x ∼ Dc+ we have

L̸=
un(f) ≤ E

c+,c−∼ρ2
x∼Dc+

[
γ

(
1 +

f(x)T (µc− − µc+)

γ

)
+

∣∣∣∣c+ ̸= c−

]
+ ϵ

= γ E
c+,c−∼ρ2

[
1

2
E

x∼Dc+

[(
1 +

f(x)T (µc− − µc+)

γ

)
+

]
+

1

2
E

x∼Dc−

[(
1 +

f(x)T (µc+ − µc−)

γ

)
+

] ∣∣∣∣c+ ̸= c−

]
+ ϵ

= γ E
c+,c−∼ρ2

[
Lµγ,sup({c+, c−}, f)

∣∣c+ ̸= c−
]

+ ϵ

(2.14)

where Lµγ,sup({c+, c−}, f) is Lµsup({c+, c−}, f) when ℓγ(x) = (1− x/γ)+ is the loss function. Observe that in

Equation (2.14) we used that DT are uniform for binary T , which is an assumption we work with in section

4, but we remove it in section 5. The proof finishes by observing that the last line in Equation (2.14) is equal

to γLµγ,sup(f) + ϵ.

2.10.3 Generalization bound

We first state the following general Lemma in order to bound the generalization error of the function class F

on the unsupervised loss function Lun(·). Lemma 2.4.3 can be directly derived from it.

8A random variable X is called σ2-subgaussian if E[eλ(X−E[X])] ≤ eλ
2σ2/2, ∀λ ∈ R. A random vector V ∈ Rd is σ2-subgaussian

in every direction, if ∀u ∈ Rd, ||u|| = 1, the random variable ⟨u, V ⟩ is σ2-subgaussian.
9We implicitly assume here that R ≥ 1, but for R < 1, we just set γ = 1 + 2Rσ

√
log 3/ϵ and the same argument holds.

33

Lemma 2.10.2. Let ℓ : Rk → R be η-Lipschitz and bounded by B. Then with probability at least 1− δ over

the training set S = {(xj , x+j , x
−
j1, . . . , x

−
jk)}Mj=1, for all f ∈ F

Lun(f̂) ≤ Lun(f) +O

ηR√kRS(F)

M
+B

√
log 1

δ

M

 (2.15)

where

RS(F) = E
σ∼{±1}(k+2)dM

[
sup
f∈F
⟨σ, f|S⟩

]
(2.16)

and f|S =
(
ft(xj), ft(x

+
j), ft(x

−
j1), . . . , , ft(x

−
jk)
)
j∈[M]
t∈[d]

Note that for k + 1-way classification, for hinge loss we have η = 1 and B = O(R2), while for logistic loss

η = 1 and B = O(R2 + log k). Setting k = 1, we get Lemma 2.4.3. We now prove Lemma 2.10.2.

Proof of Lemma 2.10.2. First, we use the classical bound for the generalization error in terms of the

Rademacher complexity of the function class (see Mohri et al. [2018] Theorem 3.1). For a real func-

tion class G whose functions map from a set Z to [0, 1] and for any δ > 0, if S is a training set composed by

M iid samples {zj}Mj=1, then with probability at least 1− δ
2 , for all g ∈ G

E[g(z)] ≤ 1

M

M∑
j=1

g(zi) +
2RS(G)

M
+ 3

√
log 4

δ

2M
(2.17)

where RS(G) is the usual Rademacher complexity. We apply this bound to our case by setting Z = X k+2, S

is our training set and the function class is

G =

{
gf (x, x+, x−1 , ..., x

−
k) =

1

B
ℓ
(
{f(x)T

(
f(x+)− f(x−i)

)
}ki=1

) ∣∣∣f ∈ F} (2.18)

We will show that for some universal constant c, RS(G) ≤ cηR
√
k

B RS(F) or equivalently

E
σ∼{±1}M

[
sup
f∈F

〈
σ, (gf)|S

〉]
≤ cηR

√
k

B
E

σ∼{±1}d(k+2)M

[
sup
f∈F

〈
σ, f|S

〉]
(2.19)

where (gf)|S = {gf (xj , x
+
j , x

−
j1, ..., x

−
jk)}Mj=1. To do that we will use the following vector-contraction inequality.

34

Theorem 2.10.3. [Corollary 4 in Maurer [2016]] Let Z be any set, and S = {zj}Mj=1 ∈ ZM . Let F̃ be a

class of functions f̃ : Z → Rn and h : Rn → R be L-Lipschitz. For all f̃ ∈ F̃ , let gf̃ = h ◦ f̃ . Then

E
σ∼{±1}M

[
sup
f̃∈F̃

〈
σ, (gf̃)|S

〉]
≤
√

2L E
σ∼{±1}nM

[
sup
f̃∈F̃

〈
σ, f̃|S

〉]

where f̃|S =
(
f̃t(zj)

)
t∈[n],j∈[M]

.

We apply Theorem 2.10.3 to our case by setting Z = X k+2, n = d(k + 2) and

F̃ =
{
f̃(x, x+, x−j1, ..., x

−
jk) = (f(x), f(x+), f(x−j1), ..., f(x−jk))|f ∈ F

}

We also use gf̃ = gf where f̃ is derived from f as in the definition of F̃ . Observe that now Theorem 2.10.3 is

exactly in the form of Equation (2.19) and we need to show that L ≤ c√
2

ηR
√
k

B for some constant c. But, for z =

(x, x+, x−1 , ..., x
−
k), we have gf̃ (z) = 1

B ℓ(ϕ(f̃(z))) where ϕ : R(k+2)d → Rk and ϕ
(
(vt, v

+
t , v

−
t1, ..., v

−
tk)t∈[d]

)
=(∑

t vt(v
+
t − v−ti)

)
i∈[k]

. Thus, we may use h = 1
B ℓ ◦ ϕ to apply Theorem 2.10.3.

Now, we see that ϕ is
√

6kR-Lipschitz when
∑
t v

2
t ,
∑
t(v

+
t)2,

∑
t(v

−
tj)

2 ≤ R2 by computing its Jacobian.

Indeed, for all i, j ∈ [k] and t ∈ [d], we have ∂ϕi

∂vt
= v+t − v−ti ,

∂ϕi

∂v+t
= vt and ∂ϕi

∂v−tj
= −vt1{i = j}. From triangle

inequaltiy, the Frobenius norm of the Jacobian J of ϕ is

||J ||F =

√∑
i,t

(v+t − v−ti)2 + 2k
∑
t

v2t ≤
√

4kR2 + 2kR2 =
√

6kR

Now, taking into account that ||J ||2 ≤ ||J ||F , we have that ϕ is
√

6kR-Lipschitz on its domain and since ℓ is

η-Lipschitz, we have L ≤
√

6ηR
√
k

B .

Now, we have that with probability at least 1− δ
2

Lun(f̂) ≤ L̂un(f̂) +O

ηR√kRS(F)

M
+B

√
log 1

δ

M

 (2.20)

Let f∗ ∈ arg minf∈F Lun(f). With probability at least 1− δ
2 , we have that L̂un(f∗) ≤ Lun(f∗) + 3B

√
log 2

δ

2M

(Hoeffding’s inequality). Combining this with Equation (2.20), the fact that L̂un(f̂) ≤ L̂un(f∗) and applying

35

a union bound, finishes the proof.

2.10.4 Proof of Proposition 2.6.3

By convexity of ℓ,

ℓ

(
f(x)T

(∑
i f(x+i)

b
−
∑
i f(x−i)

b

))
= ℓ

(
1

b

∑
i

f(x)T
(
f(x+i)− f(x−i)

))
≤ 1

b

∑
i

ℓ
(
f(x)T

(
f(x+i)− f(x−i)

))
Thus,

Lblockun (f) = E
x,x+

i

x−
i

[
ℓ

(
f(x)T

(∑
i f(x+i)

b
−
∑
i f(x−i)

b

))]
≤ E
x,x+

i

x−
i

[
1

b

∑
i

ℓ
(
f(x)T

(
f(x+i)− f(x−i)

))]
= Lun(f)

The proof of the lower bound is analogous to that of Lemma 2.4.4.

2.11 Results for k negative samples

2.11.1 Formal theorem statement and proof

We now present Theorem 2.11.1 as the formal statement of Theorem 2.6.1 and prove it. First we define some

necessary quantities.

Let (c+, c−1 , . . . , c
−
k) be k + 1 not necessarily distinct classes. We define Q(c+, c−1 , . . . , c

−
k) to be the set of

distinct classes in this tuple. We also define I+(c−1 , ..., c
−
k) = {i ∈ [k] | c−i = c+} to be the set of indices where

c+ reappears in the negative samples. We will abuse notation and just write Q, I+ when the tuple is clear

from the context.

To define L̸=
un(f) consider the following tweak in the way the latent classes are sampled: sample c+, c−1 , . . . , c

−
k ∼

ρk+1 conditioning on |I+| < k and then remove all c−i , i ∈ I+. The datapoints are then sampled as usual:

36

x, x+ ∼ D2
c+ and x−i ∼ Dc−i , i ∈ [k], independently.

L̸=
un(f) := E

c+,c−i
x,x+,x−

i

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i/∈I+

) ∣∣∣|I+| < k
]

which always contrasts points from different classes, since it only considers the negative samples that are not

from c+.

The generalization error is 10

GenM = O

R√kRS(F)

M
+ (R2 + log k)

√
log 1

δ

M


were RS(F) is the extension of the definition in Section 2.4: RS(F) = E

σ∼{±1}(k+2)dM

[
supf∈F ⟨σ, f|S⟩

]
, where

f|S =
(
ft(xj), ft(x

+
j), ft(x

−
j1), . . . , , ft(x

−
jk)
)
j∈[M],t∈[d]

.

For c+, c−1 , ..., c
−
k ∼ ρk+1, let τk = P[I+ ̸= ∅] and τ ′ = P[c+ = c−i ,∀i]. Observe that τ1, as defined in

Section 2.4, is P[c+ = c−1]. Let pmax(T) = maxcDT (c) and

ρ+min(T) = min
c∈T

Pc+,c−i ∼ρk+1

(
c+ = c|Q = T , I+ = ∅

)

In Theorem 2.11.1 we will upper bound the following quantity: E
T ∼D

[
ρ+min(T)

pmax(T) L
µ
sup(T , f̂)

]
(D was defined in

Section 2.6.1).

Theorem 2.11.1. Let f̂ ∈ arg minf∈F L̂un(f). With probability at least 1− δ, for all f ∈ F

E
T ∼D

[
ρ+min(T)

pmax(T)
Lµsup(T , f̂)

]
≤ 1− τ ′

1− τk
L̸=
un(f) + c′k

τ1
1− τk

s(f) +
1

1− τk
GenM

where c′ is a constant.

Note that the definition of s(f) used here is defined in Section 2.4

Proof. First, we note that both hinge and logistic loss satisfy the following property: ∀I1, I2 such that

10The log k term can be made O(1) for the hinge loss.

37

I1 ∪ I2 = [t] we have that

ℓ({vi}i∈I1) ≤ ℓ({vi}i∈[t]) ≤ ℓ({vi}i∈I1) + ℓ({vi}i∈I2) (2.21)

We now prove the Theorem in 3 steps. First, we leverage the convexity of ℓ to upper bound a supervised-

type loss with the unsupervised loss Lun(f) of any f ∈ F . We call it supervised-type loss because it also

includes degenerate tasks: |T | = 1. Then, we decompose the supervised-type loss into an average loss over a

distribution of supervised tasks, as defined in the Theorem, plus a degenerate/constant term. Finally, we

upper bound the unsupervised loss Lun(f) with two terms: L̸=
un(f) that measures how well f contrasts points

from different classes and an intraclass deviation penalty, corresponding to s(f).

Step 1 (convexity): When the class c is clear from context, we write µ̂c = E
x∼c

[f̂(x)]. Recall that the

sampling procedure for unsupervised data is as follows: sample c+, c−1 , ..., c
−
k ∼ ρk+1 and then x, x+ ∼ D2

c+

and x−i ∼ Dc−i , i ∈ [k]. So, we have

Lun(f̂) = E
c+,c−i ∼ρk+1

x,x+∼D2
c+

x−
i ∼D

c
−
i

[
ℓ

({
f̂(x)T

(
f̂(x+)− f̂(x−i)

)}k
i=1

)]

= E
c+,c−i ∼ρk+1

x∼Dc+

E
x+∼Cc+

x−
i ∼D

c
−
i

[
ℓ

({
f̂(x)T

(
f̂(x+)− f̂(x−i)

)}k
i=1

)]
≥ E
c+,c−i ∼ρk+1

x∼Dc+

[
ℓ

({
f̂(x)T

(
µ̂c+ − µ̂c−i

)}k
i=1

)]

(2.22)

where the last inequality follows by applying the usual Jensen’s inequality and the convexity of ℓ. Note

that in the upper bounded quantity, the c+, c−1 , ..., c
−
k don’t have to be distinct and so the tuple does not

necessarily form a task.

Step 2 (decomposing into supervised tasks) We now decompose the above quantity to handle repeated

classes.

E
c+,c−i ∼ρk+1

x∼Dc+

[
ℓ

({
f̂(x)T

(
µ̂c+ − µ̂c−i

)}k
i=1

)]

≥ (1− τk) E
c+,c−i ∼ρk+1

x∼Dc+

[
ℓ

({
f̂(x)T

(
µ̂c+ − µ̂c−i

)}k
i=1

) ∣∣∣∣∣I+ = ∅

]
+ τk E

c+,c−i ∼ρk+1

[ℓ(0, ..., 0︸ ︷︷ ︸
|I+| times

)|I+ ̸= ∅]

38

≥ (1− τk) E
c+,c−i ∼ρk+1

x∼Dc+

[
ℓ

({
f̂(x)T (µ̂c+ − µ̂c)

}
c∈Q
c ̸=c+

)∣∣∣∣∣I+ = ∅

]
+ τk E

c+,c−i ∼ρk+1

[
ℓ|I+|(⃗0)

∣∣∣ I+ ̸= ∅]

(2.23)

where ℓt(⃗0) = ℓ(0, . . . , 0) (t times). Both inequalities follow from the LHS of Equation (2.21). Now we

are closer to our goal of lower bounding an average supervised loss, since the first expectation in the RHS

has a loss which is over a set of distinct classes. However, notice that this loss is for separating c+ from

Q(c+, c−1 , ..., c
−
k) \ {c+}. We now proceed to a symmetrization of this term to alleviate this issue.

Recall that in the main paper, sampling T from D is defined as sampling the (k+1)-tuple from ρk+1 conditioned

on I+ = ∅ and setting T = Q. Based on this definition, by the tower property of expectation, we have

E
c+,c−i ∼ρk+1

x∼Dc+

[
ℓ

({
f̂(x)T (µ̂c+ − µ̂c)

}
c∈Q
c̸=c+

)∣∣∣∣∣I+ = ∅

]

= E
T ∼D

E
c+,c−i ∼ρk+1

x∼Dc+

[
ℓ
({
f̂(x)T

(
µ̂c+ − µ̂c

)}
c∈Q
c̸=c+

)∣∣∣Q = T , I+ = ∅
]

= E
T ∼D

E
c+∼ρ+(T)
x∼Dc+

[
ℓ
({
f̂(x)T

(
µ̂c+ − µ̂c

)}
c∈T
c̸=c+

)]
(2.24)

where ρ+(T) is the distribution of c+ when (c+, c−1 , ..., c
−
k) are sampled from ρk+1 conditioned on Q = T

and I+ = ∅. Recall that ρ+min(T) from the theorem’s statement is exactly the minimum out of these |T |

probabilities. Now, to lower bound the last quantity with the LHS in the theorem statement, we just need to

observe that for all tasks T

E
c+∼ρ+(T)
x∼Dc+

[
ℓ
({
f̂(x)T

(
µ̂c+ − µ̂c

)}
c∈T
c ̸=c+

)]

≥ ρ+min(T)

pmax(T)
E

c+∼DT
x∼Dc+

[
ℓ
({
f̂(x)T

(
µ̂c+ − µ̂c

)}
c∈T
c ̸=c+

)]

=
ρ+min(T)

pmax(T)
Lsup(T , f̂)

(2.25)

By combining this with Equations (2.22), (2.23) and (2.25) we get

39

(1− τk) E
T ∼D

[
ρ+min(T)

pmax(T)
Lsup(T , f̂)

]
≤ Lun(f̂)− τk E

c+,c−i ∼ρk+1

[
ℓ|I+|(⃗0)

∣∣∣ I+ ̸= ∅] (2.26)

Now, by applying Lemma 2.10.2, we bound the generalization error: with probability at least 1− δ, ∀f ∈ F

Lun(f̂) ≤ Lun(f) +GenM (2.27)

However, Lun(f) cannot be made arbitrarily small. One can see that for all f ∈ F , Lun(f) is lower bounded

by the second term in Equation (2.22), which cannot be made arbitrarily small as τk > 0.

Lun(f) ≥ E
c+,c−i ∼ρk+1

x,x+∼Dc+

x−
i ∼D

c
−
i

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i∈I+

)]
≥ τ E

c+,c−i ∼ρk+1

[
ℓ|I+|(⃗0)

∣∣∣ I+ ̸= ∅] (2.28)

where we applied Jensen’s inequality. Since τk is not 0, the above quantity can never be arbitrarily close to 0

(no matter how rich F is).

Step 3 (Lun decomposition) Now, we decompose Lun(f) by applying the RHS of Equation (2.21)

Lun(f) ≤ E
c+,c−i ∼ρk+1

x,x+∼D2
c+

x−
i ∼D

c
−
i

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i/∈I+

)
+ ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i∈I+

)]
(2.29)

= E
c+,c−i ∼ρk+1

x,x+∼D2
c+

x−
i ∼D

c
−
i
, i/∈I+

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i/∈I+

)]
+ E

c+,c−i ∼ρk+1

x,x+∼D2
c+

x−
i ∼D

c
−
i
, i∈I+

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i∈I+

)]

(2.30)

= (1− τ ′) E
c+,c−i ∼ρk+1

x,x+∼D2
c+

x−
i ∼D

c
−
i
,i /∈I+

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i/∈I+

)∣∣∣|I+| < k
]

+τk E
c+,c−i ∼ρk+1

x,x+∼D2
c+

x−
i ∼D

c
−
i
, i∈I+

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i∈I+

) ∣∣∣∣∣I+ ̸= ∅
] (2.31)

40

Observe that the first term is exactly (1− τ ′)L̸=
un(f). Thus, combining Equations (2.26), (2.27) and (2.31)

we get

(1− τk) E
T ∼D

[
ρ+min(T)

pmax(T)
Lsup(T , f̂)

]
≤ (1− τ ′)L̸=

un(f) +GenM

+ τk E
c+,c−i ∼ρk+1

[
E

x,x+∼D2
c+

x−
i ∼D

c
−
i
, i∈I+

[
ℓ
({
f(x)T

(
f(x+)− f(x−i)

)}
i∈I+

)]
− ℓ|I+|(⃗0)

∣∣∣∣∣I+ ̸= ∅
]

︸ ︷︷ ︸
∆(f)

(2.32)

From the definition of I+, c−i = c+, ∀i ∈ I+. Thus, from Lemma 2.10.1, we get that

∆(f) ≤ c′ E
c+,c−i ∼ρk+1

[
|I+|

√
∥Σ(f, c)∥2 E

x∼Dc

[∥f(x)∥]
∣∣∣ I+ ̸= ∅] (2.33)

for some constant c′.

Let u be a distribution over classes with u(c) = Pc+,c−i ∼ρk+1 [c+ = c|I+ ≠ ∅] and it is easy to see that

u(c) ∝ ρ(c)
(
1− (1− ρ(c))k

)
By applying the tower property to Equation (2.33) we have

∆(f) ≤ c′ E
c∼u

[
E

c+,c−i ∼ρk+1

[
|I+|

∣∣c+ = c, I+ ̸= ∅
] √
∥Σ(f, c)∥2 E

x∼Dc

[∥f(x)∥]

]
(2.34)

But,

E
c+,c−i ∼ρk+1

[
|I+|

∣∣c+ = c, I+ ̸= ∅
]

=

k∑
i=1

Pc+,c−i ∼ρk+1

(
c−i = c+

∣∣c+ = c, I+ ̸= ∅
)

= kPc+,c−i ∼ρk+1

(
c−1 = c+

∣∣c+ = c, I+ ̸= ∅
)

= k
Pc+,c−i ∼ρk+1

(
c−1 = c+ = c

)
Pc+,c−i ∼ρk+1

(
c+ = c, I+ ̸= ∅

)
= k

ρ2(c)

ρ(c)
(
1− (1− ρ(c))k

) = k
ρ(c)

1− (1− ρ(c))k

(2.35)

41

Now, using the fact that τk = 1−
∑
c′ ρ(c′)(1− ρ(c′))k =

∑
c′ ρ(c′)

(
1− (1− ρ(c′))k

)
and τ1 =

∑
c ρ

2(c),

τk
1− τk

∆(f) ≤ τk
1− τk

c′ E
c∼u

[
k

ρ(c)

1− (1− ρ(c))k

√
∥Σ(f, c)∥2 E

x∼Dc

[∥f(x)∥]
]

= c′k
τk

1− τk

∑
c

ρ2(c)∑
c′ ρ(c′) (1− (1− ρ(c′))k)

√
∥Σ(f, c)∥2 E

x∼Dc

[∥f(x)∥]

= c′k
τ1

1− τk
E
c∼ν

[√
∥Σ(f, c)∥2 E

x∼Dc

[∥f(x)∥]
]

= c′k
τ1

1− τk
s(f)

(2.36)

and we are done.

2.11.2 Competitive bound

As in Section 2.5.2, we prove a competitive type of bound, under similar assumptions. Let ℓγ(v) =

max{0, 1 + maxi{−vi}/γ}, v ∈ Rk, be the multiclass hinge loss with margin γ and for any T let Lµγ,sup(T , f)

be Lµsup(T , f) when ℓγ is used as loss function. For all tasks T , let ρ′
+

(T) is the distribution of c+ when

(c+, c−1 , ..., c
−
k) are sampled from ρk+1 conditioned on Q = T and |I+| < k. Also, let ρ′

+
max(T) be the

maximum of these |T | probabilities and pmin(T) = minc∈T DT (c).

We will show a competitive bound against the following quantity, for all f ∈ F : E
T ∼D′

[
ρ′+max(T)
pmin(T) L

µ
γ,sup(T , f)

]
,

where D′ is defined as follows: sample c+, c−1 , ..., c
−
k ∼ ρk+1, conditioned on |I+| < k. Then, set T = Q.

Observe that when I+ = ∅ with high probability, we have D′ ≈ D.

Lemma 2.11.2. For all f ∈ F suppose the random variable f(X), where X ∼ Dc, is σ
2(f)-subgaussian in

every direction for every class c and has maximum norm R(f) = maxx∈X ∥f(x)∥. Let f̂ ∈ arg minf∈F L̂un(f).

Then for all ϵ > 0, with probability at least 1− δ, for all f ∈ F

E
T ∼D

[
ρ+min(T)

pmax(T)
Lµsup(T , f̂)

]
≤ αγ(f) E

T ∼D′

[
ρ′

+
max(T)

pmin(T)
Lµγ,sup(T , f)

]
+ βs(f) + ηGenM + ϵ

where γ(f) = 1 + c′R(f)σ(f)(
√

log k +
√

log R(f)
ϵ), c′ is some constant, α = 1−τ ′

1−τk , β = k τ1
1−τk and η = 1

1−τk .

Proof. We will show that ∀f ∈ F

L̸=
un(f) ≤ γ(f) E

T ∼D′

[
ρ′

+
max(T)

pmin(T)
Lµγ,sup(T , f)

]
(2.37)

and the Lemma follows from Theorem 2.6.1. Now, we fix an ϵ > 0, an f ∈ F and we drop most of the

42

arguments f in the rest of the proof. Also, fix c+, c−1 . . . c
−
k , x and let t = k − |I+|. We assume without loss

of generality, that c+ ̸= c−i , ∀i ∈ [t]. Now,

max
i∈[t]

f(x)T (f(x−i)− f(x+)) ≤ µ+ max
i
z−i − z

+ (2.38)

where µ = maxi∈[t] f(x)T (µc−i
− µc+), z−i = f(x)T (f(x−i) − µc−i) and z+ = f(x)T (f(x+) − µc+). zi are

centered σ2R2-subgaussian, so from standard properties of subgaussian random variables P[maxi z
−
i ≥

√
2σR
√

log t +
√

2c1σR
√

logR/ϵ] ≤ (ϵ/R)c1 (again we consider here the case where R ≥ 1 and for R < 1,

the same arguments hold but with removing R from the log). z+ is also centered σ2R2-subgaussian, so

P[z+ ≥
√

2c1σR
√

logR/ϵ] ≤ (ϵ/R)c1 . Let γ = 1 + c′σR(
√

log t+
√

logR/ϵ) for appropriate constant c′. By

union bound, we have p = P[maxi z
−
i − z+ ≥ γ − 1] ≤ 2(ϵ/R)c1 . Thus, Ez+,z−i [(1 + µ+ maxi z

−
i − z+)+] ≤

(1− p)(µ+ γ)+ + p(2R2 + 1) ≤ γ(1 + µ/γ)+ + ϵ (for appropriate constant c1). By taking expectation over

c+, c−i ∼ ρk+1, conditioned on |I+| < k , and over x ∼ Dc+ we get

L̸=
un(f) ≤ γ E

c+,c−i ∼ρk+1

x∼Dc+

[(
1 +

maxc∈Q,c ̸=c+ f(x)T (µc − µc+)

γ

)
+

∣∣∣∣|I+| < k

]

= γ E
T ∼D′

E
c+,c−i ∼ρk+1

x∼Dc+

[(
1 +

maxc∈Q,c̸=c+ f(x)T (µc − µc+)

γ

)
+

∣∣∣∣Q = T , |I+| < k

]

= γ E
T ∼D′

E
c+∼ρ′+(T)
x∼Dc+

[(
1 +

maxc∈T,c ̸=c+ f(x)T (µc − µc+)

γ

)
+

]
≤ γ E

T ∼D′

[
ρ′

+
max(T)

pmin(T)
Lµγ,sup(T , f)

]

(2.39)

2.12 Examples for Section 2.6.2

Here, we illustrate via examples two ways in which the increase of k can lead to suboptimal f̂ . We will

consider the hinge loss as the loss function, while the examples carry over trivially for logistic loss.

1. The first example is the case where even though there exist representations in F that can separate every

class, the suboptimal representation is picked by the algorithm when k = Ω(|C|). Let C = {ci}i∈[n] where

43

for each class, Dci is uniform over two points {x1i , x2i }. Let ei be the indicator vectors in Rn and let the

class F consists of {f0, f1} with f0, f1 : X 7→ Rn where f1(x1i) = 3/2rei and f1(x2i) = 1/2rei for all i, for

some r > 0, and f0 = 0⃗. Finally, ρ is uniform over C. Now, when the number of negative samples is Ω(n),

the probability that ∃j ∈ [k] such that c+ = c−j is constant, and therefore Lun(f) = Ω(r2) > 1 = Lun(f0)

when r is large. This means that despite Lsup(C, f1) = 0, the algorithm will pick f0 which is a suboptimal

representation.

2. We can extend the first example to the case where, even when k = o(|C|), the algorithm picks suboptimal

representations. To do so, we simply ‘replicate’ the first example to create clusters of classes. Formally, let

C = {cij}i,j∈[n] where for each class, Dcij is uniform over two points {x1ij , x2ij}. Finally, same as above, let

F consist of two functions {f0, f1}. The function f1 maps f1(x1ij) = 3/2rei and f1(x2ij) = 1/2rei for all

i, j and f0 = 0⃗. ρ is uniform over C. Now, note that f1 ‘clutsters’ the n2 classes and their points into n

clusters, each along an ei. Thus, it is only useful for contrasting classes from different clusters. However,

note that the probability of intra-cluster collision with k negative samples is 1− (1−1/n)k. When k = o(n),

we have that Lun(f1) = o(1) < 1 = Lun(f0) so the algorithm will pick f1. However, when k = Ω(n),

Lun(f) = Ω(r2) > 1 = Lun(f0) and the algorithm will pick the suboptimal representation f0. Thus, despite

|C| = n2, having more than n negative samples can hurt performance, since even tough f1 cannot solve all

the tasks, the average supervised loss over t-way tasks, t = o(n), is Lsup(f) ≤ O(1− (1− 1/n)t−1) = o(1).

2.13 Experiment details

2.13.1 Wiki-3029 construction

We use the Wikipedia dump and select articles that have entries in the WordNet, have at least 8 sections

and at least 12 sentences of length at least 4 per section. At the end of this filtering we are left with 3029

articles with at least 200 sentences per article. We then sample 200 sentences from each article and do a

70%/10%/20% train/dev/test split.

2.13.2 GRU model

We use a bi-directional GRU with output dimension of 300 trained using dropout 0.3. The input word

embeddings are initialized to pretrained CC GloVe vectors and fixed throughout training.

44

Chapter 3

Understanding Contrastive Learning

Requires Incorporating Inductive

Biases

This chapter studies contrastive learning with data augmentations, based on previously published work [Saunshi

et al., 2022]. In this setting, contrastive learning encourages augmentations (views) of the same input to have

more similar representations compared to augmentations of different inputs. Recent attempts to theoretically

explain the success of contrastive learning on downstream classification tasks prove guarantees depending on

properties of augmentations and the value of contrastive loss of representations. We demonstrate that such

analyses, that ignore inductive biases of the function class and training algorithm, cannot adequately explain

the success of contrastive learning, even provably leading to vacuous guarantees in some settings. Extensive

experiments on image and text domains highlight the ubiquity of this problem – different function classes

and algorithms behave very differently on downstream tasks, despite having the same augmentations and

contrastive losses. Theoretical analysis is presented for the class of linear representations, where incorporating

inductive biases of the function class allows contrastive learning to work with less stringent conditions

compared to prior analyses.

45

3.1 Introduction

Recently, representation functions learned via contrastive learning have transformed machine learning. Using

unlabeled data, a representation function is learnt by generating simple augmentations of each datapoint and

by enforcing, via a suitable loss function, that (1) augmentations of a single datapoint tend to be clustered (2)

augmentations of different datapoints tend to be far apart. Such representations give competitive classification

performance —via even a linear classifier— on a host of downstream tasks, bringing us closer to the old

dream of machine learners capable of generalization across different data distributions and tasks.

We lack a conceptual framework for understanding such phenomena — which is unsurprising, since good

quantitative understanding of generalization is lacking even for single task and single data distribution.

However, deriving even partial conceptual understanding could help push the field forward, and researchers

have begun to grapple with this task [Arora et al., 2019, Tosh et al., 2021a, HaoChen et al., 2021]. The current

work seeks to provide guidance for further development of this nascent theory1 using simple experiments and

theoretical analysis. A common thread in these existing theories is the following components: (1) Quantifying

how data augmentations implicitly encode downstream class labels. (2) Demonstrating how representations

with small contrastive loss can uncover this implicit structure and do well on downstream tasks.

Recent works formalize (1) via assumptions that end up implying that the augmentation distributions of

inputs from the same class have significant overlap, but there is little overlap for inputs from different classes.

For example, distributions of augmentations of different dog images tend to be similar to each other, but

their union has little overlap with distributions of augmentations of cat images. Arora et al. [2019] — which

predates the recent wave of methods — assume that points in the same class share the same augmentation

distribution, and use this to show that the contrastive loss is a surrogate to the downstream performance.

Since methods like SimCLR [Chen et al., 2020a] do not appear to satisfy such assumptions, recently HaoChen

et al. [2021] gave a more refined analysis under milder assumptions, that requires only some overlap in

augmentation distributions, such that the resultant graph of connections due to overlaps within a class is

dense. Again, it can be shown that a low-dimensional representation that is near-optimal in the contrastive

loss is guaranteed to linearly separate the downstream classes.

Note that properties of the class of representation functions (architecture) or the training algorithm (SGD,

Adam etc.) make no appearance in the above analyses; but only properties of the augmentation distributions

1Our title is a clear allusion to Zhang et al. [2017a], which highlighted a gap between deep learning phenomena and classical
ML theory, motivating development of better theoretical understanding.

46

g(𝒳)

f(𝒳)augs 𝒳data 𝒳̄

Pretraining: Lcont(g) ≈ Lcont(f)
Downstream: Lclf(g) ≫ Lclf(f)

Figure 3.1: Cartoon of our theoretical example. The downstream labels (and thus classification loss Lclf)
are determined by a few relevant attributes (e.g. cat or dog?), and the augmentations perturb irrelevant
attributes (e.g. grayscale, random crop). Without restricting the function class for the contrastive pretraining
task, there exist perfect (f) and spurious (g) augmentation-invariant representations which both minimize
the contrastive loss Lcont. However, minimizing using a linear representation class is always guaranteed to
succeed with these augmentations (Section 3.3).

and value of contrastive loss of representations. This is understandable since currently theory is unable to

pinpoint why different real-life architectures differ in their capabilities, or to pinpoint the implicit bias of

the training algorithms. Nevertheless it raises interesting questions: Is the contrastive loss indeed a good

indicator of downstream performance? Do augmentations overlap sufficiently enough in practice to explain

the success of contrastive learning? Can contrastive learning succeed even when there is little to no overlap?

In a nutshell, the current work suggests via experiments and simple theory that the answers are, respectively:

No, Maybe no, Yes. In particular, ignoring the architecture and the training algorithm can make the current

theoretical analyses of contrastive learning vacuous. We present three key phenomena:

• Function class sensitivity. Downstream performance of a representation depends not just on its

contrastive loss, but it is also sensitive to the function class (architecture) and training procedure used to

learn it.

• Brittleness of transfer. Minimizing the contrastive loss to optimality can sometimes have a non-

monotonic, deleterious effect on downstream performance, despite the augmentations being effective for

some function classes.

• The disjoint augmentations regime. When augmentation distributions for inputs do not overlap, it

can be shown that any function-class-agnostic analysis (subsumes prior work) provably leads to vacuous

guarantees. However on-overlapping augmentations can still be “informative”, and contrastive learning

with appropriate function classes can succeed, a phenomenon unexplained by existing theory.

47

Organization. We define the contrastive losses and downstream performance in Section 3.2, and summarize

prior theoretical results and how they ignore inductive biases. In Section 3.3 we describe a simple synthetic

setting that elucidates all of the aforementioned phenomena. A pictorial depiction in Figure 3.1 demonstrates

the existence of bad contrastive solutions, despite the augmentations satisfying intuitive properties. These

ideas are grounded through theoretical results in Section 3.4, which includes lower bounds for function class

agnostic analyses and upper bounds that are sensitive to the function class of linear representations. Finally

we describe various experimental setups in Section 3.5.

3.1.1 Related work

Contrastive learning has been very successful at solving downstream tasks by learning representations from

similar pairs of data obtained using temporal information [Wang and Gupta, 2015, Logeswaran and Lee, 2018]

or different views or augmentations of inputs [Dosovitskiy et al., 2014, Hjelm et al., 2019, Wu et al., 2018,

Bachman et al., 2019, Tian et al., 2020a, He et al., 2020, Chen et al., 2020a, Chen and He, 2021, Gao et al.,

2021]. Given its empirical success, there has been significant interest in the theory of contrastive learning,

from various perspectives. Most relevant to us are learning theoretic analyses [Arora et al., 2019, Tosh et al.,

2021b,a, HaoChen et al., 2021, Wang et al., 2022] and their follow ups [Nozawa and Sato, 2021, Ash et al.,

2022]. These study the downstream linear classification performance of learned representation, by making

assumptions about the data and augmentation distributions.

Contrastive learning has also been studied (1) from a mutual information maximization view [Oord et al.,

2018, Hjelm et al., 2019, Bachman et al., 2019]; [Tschannen et al., 2020] points out certain issues with this

view, (2) using an information theoretic framework Tsai et al. [2021]; fails to explain downstream success via

simple linear classifiers, (3) through properties like alignment and uniformity on the sphere Wang and Isola

[2020], (4) under certain latent variable data generative processes [Zimmermann et al., 2021, Von Kügelgen

et al., 2021], and (5) through a causality perspective [Mitrovic et al., 2021]. On the optimization front, [Wen

and Li, 2021] study the feature learning process of contrastive learning with gradient dynamics on a two layer

network, under a sparse coding model. The theory of noise contrastive estimation [Gutmann and Hyvärinen,

2010] has been a useful motivation for negative sampling based objectives. On the empirical side, there are

studies on identifying useful augmentation properties [Tian et al., 2020b].

Non-contrastive methods, with no negative samples, [Chen and He, 2021, Grill et al., 2020] rely on tricks

like stop-grad to avoid representation collapse. Dimension collapse of representations has also been studied

48

[Jing et al., 2022]. Unlike these works, the brittleness of transfer we study is neither due to ill-designed

objectives nor due to training degeneracies. It is fundamental to data distributions and arises out of existence

of spurious solutions. A related idea of feature suppression [Chen et al., 2021] and shortcut solutions found

by contrastive learning was recently studied in Robinson et al. [2021] in certain stylized settings, with a

proposed fix through better augmentations strategies. We instead study the role of inductive bias of function

classes in avoiding such shortcut solutions. [Abnar et al., 2022] analyze upstream to downstream transfer

for supervised pre-training, complementing our experiments for unsupervised pre-training, whereas Wu et al.

[2020a] studies negative transfer for multi-task learning. Robinson et al. [2021] also observe negative transfer

for contrastive learning in some settings. Finally, there are theoretical works for other types of self-supervised

learning [Bansal et al., 2021], including methods like context reconstruction [Lee et al., 2021] and language

model [Saunshi et al., 2021], studying their benefits on downstream tasks.

3.2 Preliminaries

Here we formalize the problem of learning useful representations via contrastive learning for downstream

classification.

Notation. We use [n] for the set {1, . . . , n}. U(S) denotes uniform distribution over a set S. For a vector

v ∈ Rn, we denote v:i ∈ Ri and vi: ∈ Rn−i to be the sub-vector of first i ∈ [n] and last i coordinates

respectively. For sets P,Q, we use PQ to denote the set of functions from Q to P .

Augmentations. We use X̄ to denote the set of all (unaugmented) samples and denote their marginal

distribution as DX̄ . X denotes the set of all augmented data. For an input x̄ ∈ X̄ , we define the corresponding

augmentation distribution over X as A(· | x̄). For instance, augmentations for an image x̄ can correspond to

applying a sequence of random transformations such as random cropping, Gaussian blur, and color jitter.

The distributions DX̄ and A together induce a marginal distribution DX over augmentations.

Contrastive self-supervised learning. The goal is to learn a representation function f : X → Rd

that maps augmentations to d-dimensional vectors by encouraging representations of “similar pairs” of

augmentations to be closer to each other, compared to representations of random pairs. A common strategy to

pick a similar pair (x, x+) is to pick two augmentations of the same input. Formally we define this distribution

49

of similar pairs Dsim as follows

(x, x+) ∼ Dsim ≡ x̄ ∼ DX̄ ; x, x+ ∼i.i.d. A(· | x̄)

The negative sampling distribution, denoted by Dneg, is picked to be the augmentation marginal distribution

DX . There are several variants of the contrastive loss, a popular one being the SimCLR loss [Chen et al.,

2020a].

LSimCLR(f) = E
(x,x+)∼Dsim,x

−
1:n∼Dn

neg

[
− log

(
ef(x)

⊤f(x+)

ef(x)⊤f(x+) +
∑n
i=1 e

f(x)⊤f(x−
i)

)]
(3.1)

Intuitively the contrastive loss aims to make f(x)⊤f(x+) larger compared to f(x)⊤f(x−i). Another variant

proposed in HaoChen et al. [2021] is the spectral contrastive loss:

Lspec(f) = E
(x,x+)∼Dsim

[
−2f(x)⊤f(x+)

]
+ E
x,x−∼D2

neg

[(
f(x)⊤f(x−)

)2]
(3.2)

We will use Lcont to refer to a generic contrastive loss, either LSimCLR or Lspec or something else.

Downstream task. We assume these involve binary classification2. If the ground-truth labeling function

is ȳ⋆ : X̄ → {±1}, the quality of representation f̄ : X̄ → Rd is captured by how well it allows linear

classification:

Lclf(f̄ ; ȳ⋆) = inf
w∈Rd

Ex̄
[
1

{
ȳ⋆(x̄)

(
f̄(x̄)

⊤
w
)
< 0
}]

(3.3)

Since the representation function is trained to map augmentations to vectors, its behavior on unaugmented

inputs can be undefined. We evaluate downstream performance on original inputs X̄ by using the average

augmentation representation fA : X̄ → Rd, defined as:

fA(x̄) = E
x∼A(·|x̄)

[f(x)], Lclf(f ; ȳ⋆) := Lclf(fA; ȳ⋆) (3.4)

Experimentally such an average gives better performance than the standard un-averaged approach.

Transfer Bounds. We introduce an abstraction of transfer function T to capture prior analyses [Arora

2We consider binary tasks mostly for simplicity. Extensions of our results (lower bounds for function class agnostic analyses
and upper bound guarantees for linear representations) to more than two classes are not difficult.

50

4.955.005.055.105.155.20
Contrastive loss

50

60

70

80

90

100

Do
wn

st
re

am
 a

cc
ur

ac
y

perfect rep f

spurious rep g

linear

Boolean hypercube example

2-layer MLP
SGD
Adam
Adam+wd

Figure 3.2: Contrastive loss → accuracy transfer plots for the Boolean hypercube example. There exist global
minimizers of Lcont with perfect (top right) and worst possible (bottom right) downstream classification error
Lclf. The representations learned by two-layer neural networks are very sensitive to training configuration.
With a smaller (linear) function class, the contrastive loss minimizer gives a nearly-perfect downstream
classifier.

et al., 2019, Tosh et al., 2021a, HaoChen et al., 2021]. It translates performance on contrastive loss to

performance on the downstream task as follows:

Lclf(f ; ȳ⋆) ≤ T (Γ, Lcont(f), d), where Γ = (DX̄ ,A, ȳ⋆, Lcont) (3.5)

These guarantees only depend on (1) problem dependent quantities like input marginals DX̄ , properties of

augmentations A, downstream label ȳ⋆, form of contrastive loss Lcont, (2) contrastive loss Lcont(f) of the

representation f and (3) its dimensionality d. Typically T is monotone non-decreasing function of Lcont(f) and

so the above bound justifies minimizing the contrastive loss. A common property of augmentations and labels

that transfer bounds assume is overlap between augmentations of images from the same class. For instance,

Arora et al. [2019] effectively assume full overlap, that is, all images from the same class have identical augmen-

tation distribution, and these distributions are different for different classes. HaoChen et al. [2021] relax this

requirement to a spectral quantity that depends on the ratio of overlap between augmentation distributions of

the same class and those of different classes, leading to a bound Lclf(f) ≤ α(Lcont(f)−minf⋆ Lcont(f
⋆)) + β,

where f⋆ is a minimizer of the contrastive loss, and α, β quantify the overlap in augmentations. These bounds

place a premium on the value of contrastive loss of f , but are agnostic to any other properties of f , like the

representation function class F it belongs to or how it was trained. We are interested in transfer bounds

51

Table 3.1: Contrastive loss and downstream accuracy of various representation classes and training procedures
used to train on the hypercube example. There exist minimizers of the contrastive loss which transfer to
perfect downstream classifiers, and ones which are no better than random guessing. Function class matters
(MLP vs. linear vs. any representation), as does the training algorithm.

Representation Contrastive loss Accuracy (%)
∃f (perfect) 4.939 100
∃g (spurious) 4.939 50
MLP + Adam 5.039 ± 0.001 74.1 ± 4.3

MLP + Adam + wd 5.040 ± 0.002 89.5 ± 4.9
Linear 5.134 ± 0.002 99.5 ± 0.1

that also incorporate these effects. A simple abstraction that incorporates the function class is

Lclf(f ; ȳ⋆) ≤ T (Γ, Lcont(f),F), where Γ = (DX̄ ,A, ȳ⋆, Lcont) (3.6)

A bound like this, unlike the one in Equation (3.5), reflects that the downstream performance at a particular

value of contrastive loss depends also on the representation function class, which we also find to be true in

many experiments.

Not about generalization. The above bounds only deal with upstream and downstream population losses.

Thus the role of function class bias is not for guaranteeing good generalization properties with finite samples,

as in supervised learning. It pertains to how good performance on a pre-training task can guarantee good

downstream performance, as will become evident in the following sections.

3.3 Warm-up: contrastive learning on hyper�s

In this section, we present a simple but illustrative example that succinctly highlights brittleness of transfer

and the importance of incorporating inductive biases in transfer bounds. Since contrastive learning tries to

make representations invariant to augmentation transformations, ideal augmentations are those that retain

parts of the input that can predict the downstream label, but modify parts that are less important for the

label. We now describe a simple example on the Boolean hypercube that captures these intuitions.

Example 3.3.1. The input set is X̄ = {±1}D, the augmentation set is X = RD. Downstream label ȳ⋆ is

linear in the first k ≪ D coordinates.

ȳ⋆(x̄) = sign(w⋆⊤x̄:k), w⋆ ∈ Rk

52

Augmentation distribution A(· | x̄) for input x̄ ∈ X̄ randomly scales down the last k coordinates while keeps

the first k coordinates unchanged3. Formally it is defined as

x ∼ A(· | x̄) ≡ τ ∼ U((0, 1]), x:k = x̄:k, xk: = τ x̄k:

where U((0, 1]) is the uniform distribution over (0, 1].

We experimentally study this example using two function classes to minimize the contrastive objective: MLP4,

linear. Results from Table 3.1 and Figure 3.2 are summarized below.

Transfer is sensitive to function class and algorithm. Firstly, we notice that despite having much

worse (higher) contrastive loss compared to MLP, linear representation has significantly better downstream

performance. Secondly, Figure 3.2 suggests that even for the same MLP architecture, the training algorithm

(Adam v/s SGD, weight decay or not) can drastically affect the downstream accuracy.

Brittleness of transfer and disjoint augmentations. Although the augmentations in the example

seem intuitively helpful, there exists a spurious representation that has much smaller contrastive loss than

all architectures, but random guessing performance downstream. This, as we show in later sections, is a

consequence of having disjoint augmentation distributions, since the original input can be recovered from an

augmentation by simply performing x̄ = sign(x). The existence of a bad minimizer of the contrastive loss

also gives us a concrete case where contrastive learning can succeed with an appropriate function class, but

the success cannot be explained by any function class agnostic analysis. With this backdrop, we present our

theoretical results next.

3.4 Lower bounds and improved analysis

In this section we discuss the role of overlap in augmentations and function class in theoretical guarantees.

We first show in the disjoint augmentation regime (augmentation distributions do not overlap), that any

function class independent analyses will lead to vacuous bounds, which includes many previous analysis.

Delving deeper into the most recent results from HaoChen et al. [2021], we discuss reasons for failure, even

in approximately disjoint augmentations. Finally we present guarantees for contrastive learning with a

linear representation function class that is sensitive to the function class and allows for weaker assumptions

3Generalizable to downscaling subsets of x̄k:, analogous to downscaling different aspects of images like color, sharpness
4CNN behave similarly to MLP.

53

on augmentations. We instantiate this bound for the hypercube example, provably explaining the good

performance of linear representations on disjoint augmentations.

3.4.1 Lower bound for disjoint augmentations

In this section, we prove that brittle transfer exists much more generically whenever the augmentation

distributions for different inputs do not overlap, generalizing our observations from the hypercube example in

the previous section.

Definition 3.4.1 (Disjoint augmentations). We say the augmentation distributions are disjoint if for all

distinct inputs x̄1, x̄2 ∈ X̄ , augmentation distributions A(· | x̄1) and A(· | x̄2) have disjoint supports.

Disjoint augmentations can be problematic because the contrastive loss only encourages separating individual

instances, but does not encourage making classes linearly separable. We formalize this argument in the next

two lemmas by showing that any representation f can be transformed — by shuffling identities of examples —

to a new representation f̂ that has lower (or equal) contrastive loss but near-trivial downstream performance.

An immediate consequence is that any function class agnostic analysis (including previous analyses) will

necessarily leads to vacuous downstream guarantees. We establish this in two settings where the exact choice

of contrastive objective is not critical; results hold for both LSimCLR and Lspec and we abbreviate these by

Lcont below. First we consider unconstrained representations.

Lemma 3.4.2. Let |X̄ | = N and d = O (N/ log2(N)). Suppose the labeling function is balanced, i.e.∑
i y
⋆
i = 0, and let DX be uniform over X̄ . If the augmentation distribution is disjoint, then for any

f⋆ : X → Rd there exists a f̂ : X → Rd such that:

Lcont(f̂) ≤ Lcont(f
⋆), & Lclf(f̂) ≥ 1

2
−O

(√
d log(N)

N

)
.

Since it is common to use normalized representations in practice (e.g., to have Euclidean norm 1), we also

establish a similar result for this case.

Lemma 3.4.3. In the setup of Lemma 3.4.2, suppose further that representations are constrained (to

any given set) and that the augmentation distributions satisfy the following: There exists a fixed source

of randomness W and a deterministic map T : (x̄, w) 7→ x that is invertible in w for any x̄ such that

x ∼ A(· | x̄) ≡ w ∼W,x = T (x̄, w). Then the conclusion of Lemma 3.4.2 holds.

54

We prove both statements jointly in Section 3.9. Both lemmas show that when the representation dimension

is small relative to the size of the input space (as is typical) and the augmentations are disjoint, there exists

a global minimizer of the contrastive loss with vacuous transfer to downstream. The extra assumption in

Lemma 3.4.3 is that the augmentation generation protocol uses a common source of randomness, which is

actually satisfied in many practical scenarios. For instance, the same sequence of transformations like random

cropping, color jittering etc. are applied to all images to generate augmentations. The other assumptions,

e.g., that the labeling function ȳ⋆ is balanced and that DX is uniform, are technical in nature and can be

potentially relaxed.

Proposition 1 in Robinson et al. [2021] discusses a similar lower bound when augmentations are disjoint, arguing

that contrastive learning can find “shortcut solutions” that can lead to feature suppression. While the motiva-

tion is similar to ours, those results are shown specifically for contrastive loss with normalized representations,

in the regime of large number of negative samples and with a specific uniform over sphere assumption on latent

variables generating the data. The above results are shown in much more general settings. Wang et al. [2022]

also show a lower bound for why the alignment and uniformity properties from Wang and Isola [2020] is insuffi-

cient to guarantee good downstream performance, through a non-overlapping augmentation example.

A corollary of these results is that any transfer learning bound that only depends on the value of the

contrastive loss cannot be meaningful in the disjoint augmentations setting.

Corollary 3.4.4. In the setup of Lemma 3.4.2 or Lemma 3.4.3, consider a transfer function T bounding the

downstream performance as Lclf(f ; ȳ⋆) ≤ T (Γ, Lcont(f), d) as in Equation (3.5), where Γ = (DX̄ ,A, ȳ⋆, Lcont)

are problem dependent but function class independent quantities. Suppose T is monotonic in its second

argument, then for all f : X → Rd:

T (Γ, Lcont(f), d) ≥ 1/2− Õ
(√

d/|X̄ |
)

Takeaways. The above lower bounds suggest that previous analyses for contrastive learning are vacuous in

the disjoint augmentation setting, due to existence of bad minimizers of the contrastive loss. The brittleness

of transfer for disjoint augmentations is also observable in practice, as in the first row of Table 3.1 for the

hypercube example. Vision and NLP experiments in Section 3.5 also demonstrate this phenomenon, for more

expressive function classes.

55

3.4.2 Prior theoretical results and failure modes

We briefly discuss the results from HaoChen et al. [2021] and delve deeper into how their function class agnostic

nature leads to poor guarantees even for approximately disjoint augmentations. Their analysis considers

the spectral loss Lspec(f) from Equation (3.2). A key component of their analysis is an augmentation graph

constructed using A, whose spectral properties characterize how much overlap there is in augmentations. This

is a weighted graph on augmentations X with adjacency matrix A ∈ RX×X with entries A[x, x′] = Dsim(x, x′),

i.e. similar augmentations have edges. The normalized adjacency matrix, a central object in spectral graph

theory, is defined as A◦ ∈ RX×X with entries A◦[x, x′] = Dsim(x,x′)√
DX (x)DX (x′)

.

Canonical results in spectral graph theory connect the eigenvalues λ1 ≤ · · · ≤ λ|X | of the normalized Laplacian

L◦ = I − A◦ to density of edges in the graph: denser graphs have larger eigenvalues. For representation

dimension d, HaoChen et al. [2021] roughly make two key assumptions: (1) any partition of the graph into

O(d) partitions is dense i.e. λd+1 is high, (2) the partition of downstream classes is sparse. The condition (2)

is the same as saying augmentations of different classes do not overlap much. Under these assumptions, they

show the following transfer bound:

Theorem 3.4.5 (Theorem 4.2 from HaoChen et al. [2021]). If λ1 ≤ · · · ≤ λ|X | are the eigenvalues of the

normalized Laplacian L◦ = I −A◦ for the augmentation distribution A, and if the augmentations can predict

the original input labels with probability 1− α, then for any d′ ∈ [d] and representation f we have

Lclf(f ; ȳ⋆) ≲ c1
α

λd′+1
+ c2

(Lspec(f)− inff⋆ Lspec(f
⋆)) d′

(λd+1 − λd′)2

where Lspec(f)− inff⋆ Lspec(f
⋆) is the sub-optimality of f .

Firstly we note that the above bound is function class independent and fits the abstraction from Equation (3.5).

If augmentations are disjoint, then augmentations of an image x̄ will be connected to each other in the

augmentation graph, but disconnected from all other input augmentations. Thus the graph A will have

|X̄ | connected components, implying that the first |X̄ | eigenvalues of the Laplacian L◦ are 0, i.e. λi = 0

for i ∈ [|X̄ |].5 So any representation dimension d < |X̄ | leads to vacuous bounds in Theorem 3.4.5. This

again happens because the global minimizer of Lspec is not unique, and some of those could be terrible on

downstream, as in our proof for Lemma 3.4.2.

5Results in spectral graph theory equate number of connected components to the multiplicity of eigenvalue 0 of the Laplacian.

56

Approximately disjoint augmentations. We show that the above bound does not scale well even when

there is very little overlap in the augmentation distributions. To quantify approximate disjointness, we

consider the problem of predicting the original input x̄ that could have generated an augmentation x, as a

classification problem.

Definition 3.4.6. Augmentation distribution A is 1− τ disjoint when the minimum error achievable in the

input identification task, i.e. predicting the input x̄ that could generate an augmentation x, is at most τ .

Formally this means

inf
g:X→X̄

Ē
x

[
E

x∼A(·|x̄)
[1 {g(x) ̸= x̄}]

]
≤ τ (3.7)

The augmentation distributions are disjoint if and only if one can perfectly predict x̄ from x, i.e. under the

disjoint augmentation setting from Definition 3.4.1, it is easy to see that A is 1-disjoint. The following result

shows that the eigenvalues and eigen-gaps in Theorem 3.4.5 will be small if the augmentation classification

accuracy is high.

Lemma 3.4.7. Suppose again that |X̄ | = N and DX̄ = U(X̄). If the augmentations are 1−τ disjoint (defined

in Definition 3.4.6), i.e. average accuracy of predicting x̄ from x is 1− τ , then for d′ ∈ [d],

λd+1 − λd′ ≤ λd+1 ≤
2τ

(1− d/N)

Thus for a small representation dimension d ≪ N , the guarantees from Theorem 3.4.5 are non-vacuous

only when Lcont(f) ≤ inff⋆ Lcont(f
⋆) +O(τ2), which is a stringent condition to satisfy. The proof of this is

presented in Section 3.9.1. Experiments, as in Section 3.3 and later in Section 3.5, suggest that contrastive

learning can succeed even without augmentation overlap. Given that prior analysis fail, we now proceed to

show function class dependent guarantees that can show tighter bounds.

3.4.3 Function class dependent transfer guarantees

We present guarantees for a representation that incorporates the function class in addition to the contrastive

loss and augmentations. Results in this section are for the spectral contrastive loss defined in Equation (3.2).

For simplicity we assume that the input and augmentation sets are finite.

57

We consider a representation class that is linear in fixed features ϕ : X → RD, defined as

Fϕ =
{
f(·) = W⊤ϕ(·) |W ∈ RD×d} (3.8)

A crucial property of the function class Fϕ is that it is expressive enough to solve the downstream task on

augmentations well, even if not sample efficiently. To formalize this, we define the following metrics

Definition 3.4.8 (Expressivity). For any augmentation representations h : X → Rd on augmentation labels

g : X → {±1}, the regression loss is defined as

Lreg(h; g) = inf
w∈Rd

E
x∼X

[(
w⊤h(x)− g(x)

)2]

Definition 3.4.9 (Inconsistency). We define inconsistency of a labeling function g ∈ {±1}X on augmentations

w.r.t. ground truth labeling ȳ⋆ ∈ {±1}X̄ on original inputs as

∆A(g, ȳ⋆) = Ē
x

[
E

x∼A(·|x̄)
[1{g(x) ̸= ȳ⋆(x̄)}]

]
(3.9)

Denote the augmentation mean features as ϕA = E
x∼A(x̄)

[ϕ(x)] and covariance as Σ(ϕ) = E
x

[
ϕ(x)ϕ(x)⊤

]
. We

now present the upper bound result.

Theorem 3.4.10. Let λ1, · · · , λD be the eigenvalues of ID−Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 in increasing order. Then

for every d′ ∈ [d], a representation f ∈ Fϕ will satisfy

Lclf(f ; ȳ⋆) ≤
min

g∈{±1}X
4
(

2∆A(g, ȳ⋆) +
√
Lreg(ϕ; g)

)
λd′+1

+

2d′(Lspec(f)− inf
f⋆∈Fϕ

Lspec(f
⋆))

(1− λd′)(λd+1 − λd′)2
.

Firstly note that the this transfer bound is indeed of the form Lclf(f ; ȳ⋆) ≤ T (Γ, Lspec(f),Fϕ) as in Equa-

tion (3.6), connecting to the function class sensitivity discussed in Section 3.1. This is because the eigenvalues,

and the inconsistency and regression metrics in the above bound depend on the features ϕ that defines the

function class, unlike the guarantee from HaoChen et al. [2021] in Theorem 3.4.5, where the eigenvalues

depend only on the data distributions. We discuss the result in more detail in Section 3.8.4 and present its

proof in Section 3.8. The result can in fact recover Theorem 3.4.5, in the special case of ϕ being full rank,

58

i.e. D = |X | . In this case we have

• Lreg(ϕ; g) = 0, since a full rank ϕ can express any function in RX .

• inff⋆∈Fϕ
Lspec(f

⋆) = inff⋆ Lspec(f
⋆) since Fϕ can express all d-dimensional representations.

• ming ∆A(g, ȳ⋆) = O(α), where α (from Theorem 3.4.5) is the minimum error in predicting labels from

augmentations. Setting g to be an optimal augmentations to label predictor and plugging into Definition 3.4.9

proves this.

• Finally, the matrix ID − Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 is closely related to the normalized Laplacian from Sec-

tion 3.4.2. Proof of this is presented in Lemma 3.8.12.

However when ϕ is not full rank, we get a function class dependent bound that can potentially provide

non-vacuous guarantees under weaker assumptions, as will be evident in the next part.

Revisiting hypercube setting. We provide theoretical explanations for observations from Section 3.3

by instantiating our lower and upper bounds for the hypercube example.

Corollary 3.4.11. Consider the setting from Example 3.3.1. Suppose the classifier is w⋆ = e1 ∈ Rk, so the

downstream label is ȳ⋆(x̄) = x̄1. Furthermore, let the feature map ϕ be an identity mapping, i.e. ϕ(x) = x. In

this setting, the following statements are true:

(a) Function class-agnostic transfer guarantees are vacuous.

(b) For any f ∈ Fϕ, we have Lclf(f ; ȳ⋆) ≤ 32k

(
Lspec(f)− inf

f⋆∈Fϕ

Lspec(f
⋆)

)
.

Result (b) suggests that finding an approximate minimizer of the contrastive loss, within the class Fϕ, is

sufficient to guarantee good downstream performance; this explains the good performance of linear repre-

sentation in Table 3.1. The proof of this part is presented in Section 3.7.1. Result (a) explains the presence

of spurious representation in the same table and also why prior analyses fail on this example, and follows

from Corollary 3.4.4.

3.5 Experiments

Our theoretical examples and analysis show that prior function class agnostic transfer bounds can be

near vacuous, particularly when augmentation distributions are disjoint (Corollary 3.4.4) or near disjoint

(Lemma 3.4.7). Furthermore they suggest that meaningful downstream guarantees for contrastive learning

59

5.25.45.65.86.0

20

40

60

80

Do
wn

st
re

am
 a

cc
ur

ac
y

CIFAR-10, all SimCLR augs

ResNet-18
ViT
MLP-Mixer
ResNet-18 + LabelOrth

4.964.985.005.025.04

20

40

60

80

Remove crops

4.964.985.005.025.04
Contrastive loss

20

40

60

80

Do
wn

st
re

am
 a

cc
ur

ac
y

Remove crops & flips

5.05.25.45.65.86.0
Contrastive loss

20

40

60

80

Add hash pixels to images

Figure 3.3: Contrastive loss → accuracy transfer plots for CIFAR-10 with ResNet-18, ViT, and MLP-Mixer

architectures for different augmentations. TL: Full pipeline of augmentations from SimCLR [Chen et al.,
2020a]. TR: Remove random cropping. BL: Remove random cropping and horizontal flip. BR: Add “hash
pixels” to each image, as described in Section 3.5.1 to ensure that there is no overlap in augmentations. Here,
we observe transfer collapse for the ViT and MLP-Mixer architectures, as they overfit to these uninformative
features; ResNet-18 ignores these pixels.

would need to depend not only on the contrastive loss but also on the representation function class and

possibly training algorithm. In this section, we ask, in the context of modern contrastive learning pipelines:

(a) how sensitive to the function class is the contrastive loss → downstream accuracy transfer in practice?,

(b) do augmentations sufficiently overlap in standard settings and (c) can contrastive learning work when

there is little to no overlap?

3.5.1 CIFAR-10 + SimCLR experiments

We consider the setting of CIFAR-10 image classification, where the augmentation distribution for contrastive

learning is derived from the popular SimCLR protocol [Chen et al., 2020a]. An augmentation is generated

by applying a series of transformations (each with some probability) to an image, like random cropping,

horizontal flipping, color jittering, grayscaling and Gaussian blurring (see Section 3.10.2).

We run contrastive learning with standard function classes (architectures): convolutional networks (ResNet)

[He et al., 2016], Vision Transformers (ViT) [Dosovitskiy et al., 2021] and MLP-Mixer [Tolstikhin et al., 2021].

60

Like in the hypercube example, we compare the transfer performance of different function class and algorithmic

choices, as contrastive pre-training proceeds, by plotting the trajectories through (Lcont(f), 1−Lclf(f)) space of

different setups. Figure 3.3 summarizes our findings at a glance and we list the key observations below:

• Effect of function class. While standard training using the full pipeline of SimCLR augmentations

(top left) displays very similar behaviors for different architectures, removal of certain transformations like

random cropping (top right) and horizontal flipping (bottom left), leading to “weaker” augmentations,

can accentuate the difference in transfer performances between different architectures.

• Label-orthogonal training. All architectures behaving similarly for the full SimCLR pipeline (top

left) might superficially suggest that the role of inductive biases is not that significant, and that function

class agnostic guarantees are good enough to explain the practical success of contrastive learning for these

augmentations. However for the same augmentations, we can find pathological representations that have

small contrastive loss but poor downstream performance, by introducing an adversarial modification to

the training algorithm and minor tweak to ResNet architecture that is detailed in Section 3.10.2. This

suggests that guarantees depending only on the contrastive loss, but not the function class or algorithm,

cannot explain the effectiveness of contrastive learning with standard architectures and augmentations.

• Hash pixels. The difference in architectures is even more prominent in the hash pixels setting (bottom

right). Here we non-destructively6 modify images and augmentations in order to force the augmentation

to be in the disjoint augmentation regime, as defined in Definition 3.4.1. In this case, ViT and MLP-Mixer

representations make the contrastive loss much smaller than ResNet, but have close to random guessing

downstream performance. ResNet training however is unaffected by this hash pixel modification, and it does

well on the downstream task, despite being far from minimizing the contrastive loss. This experiment not

only highlights the difference in function classes, but also concretely demonstrate a case where contrastive

learning can succeed despite the augmentation distributions being disjoint. Details on the hash pixel

augmentation are in Section 3.10.2.

An important point to note is that the contrastive losses and downstream accuracies in Figure 3.3 are measured

on unseen data and are thus reflective of the population versions of these metrics; thus the difference in transfer

performance is not an issue of generalization. Further details of experimental setups and hyperparameters are

in Section 3.10.2. The next question we tackle is understanding how much overlap there is in augmentations

for standard settings.

6Only add a small number of pseudorandom pixels in random locations of a 2D image; this kind of noise can be easily
removed and do not visually change images by much.

61

5.35.45.55.65.7
20

40

60

80

100

Do
wn

st
re

am
 a

cc
ur

ac
y

AG News, Drop 30%

BoW
GRU
Transformer

5.35.45.55.65.7
20

40

60

80

100
Drop 30% + permute

5.45.65.86.06.2
Contrastive loss

20

40

60

80

100

Do
wn

st
re

am
 a

cc
ur

ac
y

Split

5.45.65.86.06.2
Contrastive loss

20

40

60

80

100
Split or full

Figure 3.4: Contrastive loss → accuracy transfer plots for AG News with bag-of-words (BoW), GRU and
Transformer architectures with representation dimensionality d = 128. Augmentations in each case are as
follows: TL: Drop random 30% of tokens. TR: Drop random 30% of tokens and randomly permute the
rest. BL: Either the first half or second half of the input. BR: Either the first half, second half or the
full input. In all cases BoW representation makes the contrastive loss reasonably small and does quite well
downstream (∼ 90%), but either Transformer or both GRU and Transformer demonstrate brittleness of
transfer for different augmentations.

3.5.2 Are we in the disjoint augmentation regime?

Central to previous theory is the assumption that there exists overlap between augmentations distributions

of data within a class. To get a sense of amount of overlap, we set up a classification task of predicting the

image x̄ that could have generated an augmentation x, similar to Definition 3.4.6. The standard ResNet-18

architecture is modified to have 5000 output classes, one for each image in a CIFAR-10 class. We train the

model to take augmentations from a fixed CIFAR-10 class and predict index of the original image generating

it. Performance is measured on unseen augmented data from inputs from the same class, by evaluating the

accuracy of predicting the original input. The results of these experiments in Figure 3.7 (averaged over the

10 classes) suggest that with extremely high accuracy, the trained model is able to identify the image given

an augmentation, with accuracies higher than 99.5% for different augmentation types. This suggests that we

may be closer to the disjoint augmentation setting than we think. An important note is that the overlap

here was only measured on images in the training set, not on the full population distribution as assumed

in prior work [HaoChen et al., 2021]. It is still an open question whether sufficient overlap exists in the

62

population distribution or not. The experiment on the training set is intended as a starting point towards

this question.

3.5.3 Experiments on text domain

In order to understand if our findings apply beyond images, we evaluate the contrastive pipeline on text

domain. We use the AG News classification dataset 7 [Zhang et al., 2015], where inputs are new articles and

the 4 classes correspond to topics of the articles. Inspired by recent augmentations strategies like word/span

deletion and word reordering [Wu et al., 2020b, Giorgi et al., 2021, Meng et al., 2021, Yan et al., 2021], we

consider four simple augmentations for our study: (i) Drop: randomly drop 30% tokens but keep the order

of remaining tokens, (ii) Drop+Permute: randomly drop 30% tokens and randomly permute the remaining

tokens, (iii) Split : randomly return either the left half or right half of the text, and (iv) Split+Full : randomly

return from the full text, its left half, or its right half.

We run contrastive learning with three models on this dataset. The first is a simple Bag-of-Word (BoW) model

that learns word embeddings and returns the average word embedding of a text, second model is a Gated

Recurrent Unit (GRU) Chung et al. [2014] and the last is a Transformer [Vaswani et al., 2017] model. Both

GRU and Transformer are unidirectional and we pick the final word representation for contrastive learning and

downstream linear classification evaluation. All models are trained from scratch to minimize the contrastive

loss, without the auxiliary MLM objective as in some prior work [Wu et al., 2020b, Giorgi et al., 2021, Meng

et al., 2021]. See Section 3.10.3 for details on the experimental setup and hyperparameters.

Figure 3.4 visualizes the training trajectories through the (Lcont(f), 1−Lclf(f)) space, i.e. the contrastive learn-

ing→ downstream accuracy transfer plots. We observe that for all augmentations, BoW has the best downstream

performance, despite having worse contrastive loss. For the drop augmentation (top left), the BoW and GRU plots

might suggest that the augmentation is good; however the Transformer model leads to brittle transfer, i.e. it

fails to solve the downstream task despite achieving lower contrastive loss. This kind of difference in transfer per-

formance is unexplained by existing function class agnostic theoretical guarantees. Since the BoW representation

is order invariant, we also test the augmentation that permutes tokens after dropping 30% of them (top right).

This change does help the downstream accuracy of Transformer, however it does not completely bridge the gap.

While the split augmentation (bottom left) works for BoW, both GRU and Transformer display brittle transfer.

However a simple change of including the original text as an augmentation leads to both GRU and Transformer

7We use the PyTorch torchtext library: https://pytorch.org/text/stable/index.html

63

https://pytorch.org/text/stable/index.html

doing well downstream. This is particularly surprising, since including the identity augmentation only decreases

the probability of overlap between augmentations, undesirable based on our current understanding of con-

trastive learning. In Section 3.10.3 we verify that this difference in performance is not just due to distribution

shift (augmentations in contrastive learning v/s unaugmented inputs in downstream evaluation).

In Figure 3.10 we visualize two dimensional representations learned using contrastive learning, where it is

evident that while the Transformer makes the representations invariant to augmentations, representations

of augmentations from different classes look very similar to each in distribution and are thus not linear

separable. This phenomenon aligns with our lower bound Lemmas 3.4.2 and 3.4.3, whose proofs reveal how

such spurious representations can be constructed. The main takeaway is that for various augmentations, a

weaker (less expressive) function class can succeed with weaker augmentations, while more expressive ones

like GRU and Transformer might require stronger augmentations to transfer well to downstream tasks. This

phenomenon is not well understood by current theory and deserves more exploration.

3.6 Conclusion

Contrastive learning has emerged as a unifying paradigm for building flexible learners that can adapt to many

tasks. It is imperative to understand it better at a conceptual and mathematical level. The current work lays

out simple experiments and theoretical examples which suggest gaps in our current understanding. Filling these

gaps will require incorporating the inductive bias of the deep nets being used, which has primarily been studied

in simplistic architectures (e.g., depth 2 or 3) so far. The hypercube example from Section 3.3 and the behavior

of simple architectures like MLPs is already an open problem. Incorporating function class bias into transfer

bounds is quite non-trivial and our results show how this can be done for linear representations. Extending

these results to more complex function classes, and incorporating training procedures could potentially give

us new insights. Our study in this work has been diagnostic in nature: identifying gaps in our understanding.

Converting these insights into algorithmic approaches is a very promising direction. We also hope that visual-

izations of contrastive loss→ downstream performance can aid selection of more robust augmentations.

64

3.7 Omitted Proofs

3.7.1 Proof of Corollary 3.4.11

The proof of (a) follows directly from Lemma 3.4.2, since all the conditions are satisfied and the augmentations

are disjoint.

For the eigenvalues, we can compute the covariances by using τ ∼ U((0, 1])

Σ(ϕ) = diag

(
1k,E

τ
[τ2]1D−k

)
= diag(1k, 1/31D−k)

Σ(ϕA) = diag

(
1k, (E

τ
[τ])21D−k

)
= diag(1k, 1/41D−k)

Thus the matrix of interest is

ID − Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 = diag (0k, 1/41D−k)

giving us λi = 0 for i ≤ k and λi = 1/4 for i > k. Plugging into Theorem 3.4.10 for d′ = k finishes the

proof.

3.8 Proof for linear representation upper bound

Firstly we set up some notation. For sets P and set Q, where P is finite, we denote QP to denote the set of

all functions from P → Q. We abuse notation and also denote QP to be a subset of Q|P |, where an element

r ∈ QP is a vector of |P | dimensions and coordinates are indexed by elements of P . For instance, when

Q = {±1} and P is finite, QP = {±1}P denotes all functions mapping elements in P to either 1 or −1.

Furthermore, r ∈ {±1}P denotes a vector in {±1}|P | that looks like (r(p))p∈P . Similarly we denote QP×R to

denote a matrix in Q|P |×|R|. For a matrix Q ∈ Rm×n, Q:d ∈ R

We now prove function class dependent guarantees for the class of linear representations. As in Section 3.4.3,

for a feature map ϕ : X → RD, we define the linear representation class Fϕ =
{
f(·) = W⊤ϕ(·) |W ∈ RD×D}.

We wish to show downstream guarantees for contrastive learning that depend not only on the contrastive loss

of a representation f : X → Rd but also uses the fact that it belongs to the class Fϕ. In particular, we desire

a bound that looks like Lclf(f ; ȳ⋆) ≤ T (A, ȳ⋆, Lcont(f),Fϕ), as described in Equation (3.6).

65

Table 3.2: Notations

Notation Definition Description

Distributions
X̄ ,X Set of inputs and augmentations
A x ∼ A(· | x̄) Augmentation distribution
DX̄ x̄ ∼ DX̄ Marginal distribution on inputs X̄
DX Ē

x
[A(· | x̄)] Marginal distribution on augmentations X

D̄ ∈ RX̄×X̄ D̄[x̄, x̄] = DX̄ (x̄) Matrix of marginal distributions on X̄
D ∈ RX×X D[x, x] = DX (x) Matrix of marginal distributions on X
Ā ∈ RX̄×X Ā[x̄, x] = DX̄ (x̄)A(x | x̄) Input augmentation distribution

Ā◦ ∈ RX̄×X D̄− 1
2 ĀD− 1

2 Normalized matrix version of Ā
A ∈ RX×X A[x, x] = Dsim(x, x) Matrix of joint distribution of augmentations

A◦ ∈ RX×X D− 1
2AD− 1

2 = Ā⊤
◦ Ā◦ Normalized matrix version of A

Fixed features
ϕ : X → RD Fixed feature map for augmentations
ϕA : X̄ → RD E

x∼A(x|·)
[ϕ(x)] Augmentation averaged feature

Σ(ϕ) ∈ RD×D E
x

[
ϕ(x)ϕ(x)⊤

]
Covariance of feature map ϕ

Φ ∈ RX×D Φ[x] = ϕ(x) Matrix version of feature map ϕ

Φ◦ ∈ RX×D D
1
2 Φ Normalized version of Φ

Representation
f : X → Rd Representation function

f◦ : X → Rd
√
DX (·)f(·) Normalized version of f

F ∈ RX×d F [x, i] = f(x)i Matrix version of f

F◦ ∈ RX×d D
1
2F Normalized version of F

Function classes
F ⊆ {f : X → Rd} Representation function class
Fϕ ⊆ {f : X → Rd}

{
W⊤ϕ(·) |W ∈ RD×d} Linear representation class

FΦ ⊆ RX×d {
ΦW |W ∈ RD×d} Linear representation class (matrix version)

66

We employ the strategy from HaoChen et al. [2021] and show guarantees for the spectral contrastive loss,

defined in Equation (3.2) as

Lspec(f) = −2 E
(x,x+)∼Dsim

[
f(x)⊤f(x+)

]
+ E
x,x−∼D2

neg

[(
f(x)⊤f(x−)

)2]
(3.10)

We first provide a sketch of their proof in our notation and highlight the main steps. Our result is similar in

spirit to theirs, but deviates at crucial junctions due to incorporation of the function class.

1. Rewrite as matrix factorization. Lemma 3.2 from HaoChen et al. [2021] shows that this objective

can be rewritten as matrix factorization. For any two augmentations x, x′ ∈ X , define wx,x′ = Dsim(x, x′) =

Ē
x

[A(x | x̄)A(x | x̄)] to be the probability that x and x′ appear as a similar pair, i.e. two augmentations of

the same input. Let wx =
∑
x′∈X wx,x′ = Dneg(x) be the marginal probability. Then the objective can be

rewritten as follows:

Lspec(f) = E
(x,x+)∼Dsim

[
f(x)⊤f(x+)

]
+ E
x,x−∼D2

neg

[(
f(x)⊤f(x−)

)2]
= −2

∑
x,x+∈X

wx,x+f(x)⊤f(x+) +
∑

x,x−∈X

wxwx−
(
f(x)⊤f(x−)

)2
=

∑
x,x′∈X

(
−2wx,x′f(x)⊤f(x′) + wxwx′

(
f(x)⊤f(x′)

)2)
= C +

∑
x,x′∈X

(
wx,x′
√
wxwx′

− (
√
wxf(x))

⊤
(
√
wx′f(x′))

)2

where C depends only on w and thus only on A, but not f . Thus Lspec(f) can be interpreted as a matrix

factorization objective, with the matrix being A◦ ∈ RX×X such that A◦[x, x′] =
wx,x′

√
wxwx′

and scaled version of

representation ux =
√
wxf(x) is being used to factorize this. Note that A◦ only depends on w’s which in turn

only depend on the distributions A, DX̄ and DX . We stack the representation f into a matrix F◦ ∈ RX×d,

where the column corresponding to x ∈ X is F◦[x] =
√
wxf(x). Then the objective can be written as

Lspec(f) = C + ∥A◦ − F◦F
⊤
◦ ∥2F . (3.11)

This helps characterize the optimal solution f⋆ of the contrastive objective, which corresponds to the matrix

F ⋆◦ learning the top d eigen-directions of the matrix A◦. Inspired by this analysis, we also show that the

spectral loss with the function class Fϕ is a matrix factorization problem, but for a different matrix that

67

depends on both A◦ and ϕ.

2. ϵ-optimal solution f While the above characterization tells us something about the optimal represen-

tation f⋆, in general we might have a representation that has sub-optimality of ϵ = Lspec(f)− Lspec(f
⋆). In

this case, it can be argued that such a representation captures significant mass of the first d eigen-directions

of A◦ as long as ϵ is small and the eigen-gap is large. More specifically, if γ1, . . . , γX denote the eigenvalues of

A◦, then the suboptimal f will capture all except O
(

ϵ
(γd+1−γd)2

)
= O

(
Lspec(f)−inff⋆ Lspec(f

⋆)

(γd+1−γd)2

)
mass of the

first d eigen-directions of A◦. For our analysis, we will suffer a suboptimality only w.r.t. the function class

Fϕ, i.e. the ϵ will be Lspec(f)− inf
f⋆∈Fϕ

Lspec(f
⋆) rather than Lspec(f)− inff⋆ Lspec(f

⋆)

3. Connecting to downstream. It remains to show why approximately learning the top d directions of

the augmentation matrix A◦ can help with a downstream task ȳ⋆. This step uses two assumptions, (1) there

is sufficient overlap in augmentation distributions overall, and (2) augmentations are approximately label

invariant, i.e. there is not much overlap in augmentations of inputs from different classes. These assumptions

imply that the true label vector y⋆ ∈ {±1}X has a high component on the first d directions of A◦. We use

similar properties but with less stringent conditions on the amount of overlap between augmentations. In

addition to this we need a crucial assumption that the function class Fϕ is expressive enough to solve the

classification task on augmentations.

3.8.1 Matrix notation

Given the backdrop of the results from HaoChen et al. [2021], we now presentation the matrix notations for

various functions that will be helpful to prove our main result. All definitions and notations are summarized

in Table 3.2.

Distributions to matrices

Let wx̄ = DX̄ (x) denote the marginal probabilities of input x̄ ∈ X̄ and wx̄,x = A(x | x̄)wx̄ denote the

joint probability of input and augmentation. The marginal for augmentations can then be defined as

wx = DX (x) =
∑
x̄ wx̄,x. To summarize

wx̄ = DX̄ (x) (3.12)

wx|x̄ = A(x | x̄) (3.13)

68

wx,x̄ = wx̄,x = A(x | x̄)wx̄ = wx|x̄wx̄ (3.14)

wx = DX (x) (3.15)

Let D̄ ∈ RX̄×X̄ denote a diagonal matrix of marginal probabilities, i.e. D̄ = diag((wx̄)x̄∈X̄). Similarly

D ∈ RX×X is the diagonal matrix of augmentation marginals. Thus these diagonal matrices satisfy

D̄[x̄, x̄] = wx̄, D[x, x] = wx (3.16)

We express the augmentation distributions A(· | x̄)x̄∈X̄ as a matrix Ā ∈ RX̄×X , where Ā[x̄, x] = wx̄,x. A

normalized version of Ā is denoted by Ā◦ ∈ RX̄×X and defined as Ā◦[x̄, x] =
wx̄,x√
wx̄wx

. We summarize these

definitions below, along with a matrix equation that follows easily from the definition

Ā[x̄, x] = wx̄,x, Ā◦[x̄, x] =
wx̄,x√
wx̄wx

, Ā◦ = D̄− 1
2 ĀD− 1

2 (3.17)

For the similarity distribution Dsim on pairs of augmentations, define the following

wx,x′ = Dsim(x, x′) = Ē
x

[A(x | x̄)A(x′ | x̄)] =
∑
x̄

wx̄wx|x̄wx′|x̄. (3.18)

Dsim is expressed as a matrix A ∈ RX×X , where A[x, x′] = wx,x′ . The normalized version of A is defined as

A◦ ∈ RX×X , where A◦[x, x′] =
wx,x′

√
wxwx′

. We summarize these definitions below, along with a matrix equation

that follows easily from the definition

A[x, x′] = wx,x′ , A◦[x, x′] =
wx,x′
√
wxwx′

, A◦ = D− 1
2AD− 1

2 (3.19)

The following lemma connects the Ā◦ and A◦

Lemma 3.8.1. For Ā◦ and A◦ defined in Table 3.2, we have the following

A◦ = Ā⊤
◦ Ā◦ (3.20)

Proof. Firstly from Equation (3.17), we get that Ā⊤
◦ Ā◦ = D− 1

2 Ā⊤D̄−1ĀD− 1
2 . Given that A◦ = D− 1

2AD− 1
2

69

from Equation (3.19), it suffices to show that A = Ā⊤D̄−1Ā. The (x, x′) entry of the RHS is as follows

(
Ā⊤D̄−1Ā

)
[x, x′] =

∑
x̄

wx̄,x wx̄,x′

wx̄
=(a)

∑
x̄

wx|x̄wx̄ wx′|x̄wx̄

wx̄
=
∑
x̄

wx̄wx|x̄wx′|x̄ =(b) wx,x′ = A[x, x′]

where (a) follows from Equation (3.14) and (b) follows from Equation (3.18). This completes the proof.

Representations to matrices

The previous section described how to convert distributions to matrices. We now do the same for representation

functions. For a feature map ϕ : X → RD, we denote Φ ∈ RX×D to be the matrix of representations, with the

rows being Φ[x] = ϕ(x). The distributionally normalized version of the representation ϕ◦(x) =
√
DX (x)ϕ(x) =

√
wxϕ(x) is denoted by Φ◦ ∈ RX×D with row for x ∈ X being ϕ◦(x). We similarly define the matrices

for representation f : X → Rd to be F , F◦ for the distributionally normalized version. It is easy to see

the following relationship between F and F◦: F◦ = D
1
2F . For the function class of linear representations

Fϕ = {W⊤ϕ(·) |W ∈ RD×d}, the matrix version is defined as FΦ = {ΦW |W ∈ RD×d}.

3.8.2 Connecting losses to matrix notations

We first define various downstream evaluation metrics for representation.

Definition 3.8.2. We define the classification and regression error for any augmentation representation

function h : X → Rd. For any ground-truth labeling ȳ⋆ : X̄ → {±1} on original inputs, we define the following

Lclf(h; ȳ⋆) = inf
w∈Rd

E
x̄∼X̄

[
1
{

sign
(
w⊤hA(x̄)

)
= ȳ⋆(x̄)

}]
(3.21)

Lreg(h; ȳ⋆) = inf
w∈Rd

E
x̄∼X̄

[(
w⊤hA(x̄)− ȳ⋆(x̄)

)2]
(3.22)

where hA(x̄) = E
x∼A(·|x̄)

[h(x)] is the augmentation averaged representation (see Table 3.2). For any labeling

g : X → {±1} on augmentations, we define the following

Lreg(h; g) = inf
w∈Rd

E
x∼X

[(
w⊤h(x̄)− g(x)

)2]
(3.23)

We now connect the downstream regression loss with matrix versions of feature map ϕ.

Lemma 3.8.3. For an arbitrary predictor on augmentations g ∈ {±1}X and its normalized version g◦ = D
1
2 g,

70

and an augmentation feature map ϕ : X → Rd and its normalized matrix Φ◦,

Lreg(ϕ; g) = ∥P⊥
Φ◦
g◦∥2 (3.24)

Proof. Note that Φ◦ = D
1
2 Φ, where Φ ∈ RX×d is the matrix version of the augmentation feature map ϕ (refer

Table 3.2). We prove the result by rewriting Lreg as follows

Lreg(ϕ; g) = inf
w∈Rd

E
x

(
ϕ(x)⊤w − g(x)

)2
= inf
w∈Rd

∑
x∈X

D(x)
(
ϕ(x)⊤w − g(x)

)2
(3.25)

= inf
w∈Rd

∑
x

(√
D(x)ϕ(x)⊤w −

√
D(x)g(x)

)2
(3.26)

= inf
w∈Rd

∥∥∥D 1
2 Φw −D 1

2 g
∥∥∥2 = inf

w∈Rd
∥Φ◦w − g◦∥2 (3.27)

=
∥∥P⊥

Φ◦
g◦
∥∥2 (3.28)

We now express the spectral contrastive loss and upper bound the downstream classification error using

matrix versions of distributions and representations.

Lemma 3.8.4. For any representation f and its corresponding normalized matrix F◦ ∈ RX×d, the spectral

contrastive loss (Equation (3.2)) and classification loss (Equation (3.3)) can be rewritten and upper bounded

as

Lspec(f) = Lspec(F◦) =
∥∥A◦ − F◦F

⊤
◦
∥∥2
F
− ∥A◦∥2F =

∥∥Ā⊤
◦ Ā◦ − F◦F

⊤
◦
∥∥2
F
−
∥∥Ā⊤

◦ Ā◦
∥∥2
F

(3.29)

Lclf(f ; ȳ⋆) ≤ Lreg(f ; ȳ⋆) = inf
w∈Rd

∥∥Ā◦F◦w − ȳ⋆◦
∥∥2
2

= ∥P⊥
Ā◦F◦

ȳ⋆◦∥22 (3.30)

Proof. We first prove the expression for Lspec(f). Note that A◦[x, x′] = wx,x′ = Dsim(x, x′) from Equa-

tion (3.18). Furthermore F◦[x] =
√
DX (x)f(x) from Table 3.2. On expanding out the contrastive loss, we

get

Lspec(f) = E
(x,x+)∼Dsim

[
f(x)⊤f(x+)

]
+ E
x,x−∼D2

neg

[(
f(x)⊤f(x−)

)2]
= −2

∑
x,x+∈X

wx,x+f(x)⊤f(x+) +
∑

x,x−∈X

wxwx−
(
f(x)⊤f(x−)

)2

71

=
∑

x,x′∈X

(
−2wx,x′f(x)⊤f(x′) + wxwx′

(
f(x)⊤f(x′)

)2)
= −

∑
x,x′∈X

(
wx,x′
√
wxwx′

)2

+
∑

x,x′∈X

(
wx,x′
√
wxwx′

− (
√
wxf(x))

⊤
(
√
wx′f(x′))

)2

= −
∑
x,x′

A◦[x, x′]2 +
∑
x,x′

(
A◦[x, x′]− F◦[x]⊤F◦[x′]

)2
= −∥A◦∥2F + ∥A◦ − F◦F

⊤
◦ ∥2F

Now we prove the upper bound of Lclf(f ; ȳ⋆). Firstly note that for any input representation h : X̄ → {±1},

we have that

Lclf(h; ȳ⋆) = inf
w∈Rd

Ex̄
[
1

{
ȳ⋆(x̄)

(
h(x̄)

⊤
w
)
< 0
}]
≤(a) inf

w∈Rd
Ex̄
[(
ȳ⋆(x̄)− h(x̄)

⊤
w
)2]

= Lreg(h; ȳ⋆)

where (a) from the fact that whenever ȳ⋆(x̄)
(
h(x̄)

⊤
w
)
< 0, h(x̄)⊤w has different sign compared to ȳ⋆ ∈ {±1},

and so (h(x̄)⊤w − ȳ⋆)2 ≥ ȳ⋆2 = 1. Thus for an augmentation representation f : X , we have

Lreg(f ; ȳ⋆) = Lreg(fA; ȳ⋆) = inf
w∈Rd

Ex̄
[(
fA(x̄)

⊤
w − ȳ⋆(x̄)

)2]
= inf
w∈Rd

∑
x̄

[(√
wx̄fA(x̄)

⊤
w −
√
wx̄ȳ

⋆(x̄)
)2]

= inf
w∈Rd

∑
x̄

[(√
wx̄fA(x̄)

⊤
w − ȳ⋆◦(x̄)

)2]

We first observe the following about fA:

√
wx̄fA(x̄) =

√
wx̄ E

x∼A(·|x̄)
[f(x)] =

√
wx̄
∑
x∈X
A(x | x̄)f(x) =

∑
x∈X

√
wx̄

wx̄,x
wx̄

f(x) =
∑
x∈X

wx̄,x√
wx̄wx

√
wxf(x)

=
∑
x

A◦[x̄, x]F◦[x] = (A◦F◦)[x̄]

Plugging this back into the previous calculation, we get

Lreg(f ; ȳ⋆) = inf
w∈Rd

∑
x̄

[(
(A◦F◦)[x̄]⊤w − ȳ⋆◦ [x̄]

)2]
= inf
w∈Rd

∥A◦F◦w − ȳ⋆◦∥
2
F

The final step follows from the standard expression for error of linear regression, which is the norm of the

component of ȳ⋆◦ on the null space of A◦F◦, i.e. ∥P⊥
A◦F◦
∥2F .

We now show a more specialized form of matrix factorization objective that results from the representation

72

belonging to a particular linear function class.

Lemma 3.8.5. For any representation f ∈ Fϕ and its normalized matrix F◦ ∈ RX×d, the spectral contrastive

loss (Equation (3.2)) can be rewritten as

Lspec(f) = Lspec(F◦) =
∥∥PΦ◦A◦PΦ◦ − F◦F

⊤
◦
∥∥2
F

+ C =
∥∥PΦ◦Ā

⊤
◦ Ā◦PΦ◦ − F◦F

⊤
◦
∥∥2
F

+ C (3.31)

where C is a constant independent of f but dependent on features ϕ. Here Φ◦ is the normalized matrix for

the features ϕ and PΦ◦ ∈ RX×X is the column projection matrix of Φ◦.

Proof. From Lemma 3.8.4, we know that Lspec(f) can be written as a matrix factorization objective as

Lspec(f) =
∥∥A◦ − F◦F

⊤
◦
∥∥2
F
− ∥A◦∥2F

Since f is from the class Fϕ, the matrix form F belongs to the class FΦ =
{

ΦW |W ∈ RD×d} (refer to

Table 3.2). Thus F◦ = D
1
2F can be written as F◦ = D

1
2F = D

1
2 ΦW = Φ◦W for some W ∈ RD×d. We can

conclude that PΦ◦F◦ = F◦ and P⊥
Φ◦
F◦ = 0 and further simplify the contrastive loss as

Lspec(f) =(a)
∥∥PΦ◦A◦PΦ◦ + PΦ◦A◦P

⊥
Φ◦

+ P⊥
Φ◦
A◦PΦ◦ + P⊥

Φ◦
A◦P

⊥
Φ◦
− F◦F

⊤
◦
∥∥2
F
− ∥A◦∥2F

=(b)
∥∥PΦ◦A◦PΦ◦ − F◦F

⊤
◦
∥∥2
F

+
∥∥PΦ◦A◦P

⊥
Φ◦

+ P⊥
Φ◦
A◦PΦ◦

∥∥2
F

+
∥∥P⊥

Φ◦
A◦P

⊥
Φ◦

∥∥2
F
− ∥A◦∥2F

=(c)
∥∥PΦ◦A◦PΦ◦ − F◦F

⊤
◦
∥∥2
F

+ C

where (a) follows by decomposing A◦ = (PΦ◦ + P⊥
Φ◦

)A◦(PΦ◦ + P⊥
Φ◦

), (b) follows because cross terms cancel

through PΦ◦P
⊥
Φ◦

multiplications, and (c) because all other terms are independent of F◦ (and so f). This

completes the proof.

We now restate the definition of Inconsistency from Section 3.4.3 and then relate it to some matrix form.

Definition 3.8.6 (Inconsistency). We define inconsistency of a labeling function g ∈ {±1}X on augmentations

w.r.t. some ground truth labeling ȳ⋆ ∈ {±1}X̄ on original inputs, as followed:

∆A(g, ȳ⋆) = Ē
x

[
E

x∼A(·|x̄)
[1{g(x) ̸= ȳ⋆(x̄)}]

]
(3.32)

73

Lemma 3.8.7. For the normalized matrix Ā◦ ∈ RX̄×X corresponding to augmentation distribution A (refer

Table 3.2), ground-truth labeling ȳ⋆ ∈ {±1}X̄ on original inputs and its normalized version ȳ⋆◦ = D
1
2 ȳ⋆, and

an arbitrary predictor g ∈ {±1}X on augmentations and its normalized version g◦ = D
1
2 g, we have

ȳ⋆◦
⊤Ā◦g◦ = 1− 2∆A(g, ȳ⋆) (3.33)

Proof. Since ȳ⋆◦ = D̄
1
2 ȳ⋆, Ā◦ = D̄− 1

2 ĀD− 1
2 and g◦ = D

1
2 g, the left hand size is equivalent to ȳ⋆⊤Āg.

Expanding this further we get

ȳ⋆⊤Āg =
∑
x̄,x

Ā[x̄, x]ȳ⋆(x̄)g(x) =(a)
∑
x̄,x

wx̄,xȳ
⋆(x̄)g(x) =(b)

∑
x̄,x

wx̄,x (1− 21{ȳ⋆(x̄) ̸= g(x)}) (3.34)

=(c)
∑
x̄∈X̄

wx̄
∑
x∈X

wx|x̄ (1− 21{ȳ⋆(x̄) ̸= g(x)}) (3.35)

= 1− 2 Ē
x

E
x∼A(·|x̄)

[1{ȳ⋆(x̄) ̸= g(x)}] = 1− 2∆A(g, ȳ⋆) (3.36)

where (a) follows from Equation (3.19), (b) follows from Equation (3.14), and (c) follows from ȳ⋆(x̄), g(x) ∈

{±1}.

3.8.3 Proof of main result

We first state the key lemmas that will used to prove the main result.

The following lemma says that if there is a predictor on augmentations that is consistent with ȳ⋆ and also

expressible enough by fixed features ϕ, then most of ȳ⋆ is retained by multiplication by PΦ◦Ā◦.

Lemma 3.8.8. For the normalized matrix Ā◦ ∈ RX̄×X corresponding to augmentation distribution A, an

augmentation feature map ϕ and corresponding normalized matrix Φ◦ (refer Table 3.2), ground-truth labeling

ȳ⋆ ∈ {±1}X̄ on original inputs and its normalized version ȳ⋆◦ = D
1
2 ȳ⋆, and an arbitrary predictor g ∈ {±1}X

on augmentations and its normalized version g◦ = D
1
2 g, we have

∥∥PΦ◦Ā
⊤
◦ ȳ

⋆
◦
∥∥ ≥ 1− 2∆A(g, ȳ⋆)−

√
Lreg(ϕ; g) (3.37)

Proof. We will use Lemma 3.8.7 to prove this result. Note that ∥ȳ⋆◦∥ = ∥g◦∥ = 1. First we lower bound

74

∥PΦ◦Ā
⊤
◦ ȳ

⋆
◦∥ by computing ȳ⋆◦

⊤Ā◦PΦ◦g◦

∥PΦ◦Ā
⊤
◦ ȳ

⋆
◦∥ ≥(a) ȳ

⋆
◦
⊤Ā◦PΦ◦g◦
∥g◦∥

= ȳ⋆◦
⊤Ā◦PΦ◦g◦

= ȳ⋆◦
⊤Ā◦g◦ − ȳ⋆◦

⊤Ā◦P
⊥
Φ◦
g◦

=(b) 1− 2∆A(g, ȳ⋆)− ȳ⋆◦
⊤Ā◦P

⊥
Φ◦
g◦

≥(c) 1− 2∆A(g, ȳ⋆)− ∥ȳ⋆◦∥∥Ā◦∥2∥P⊥
Φ◦
g◦∥

≥(d) 1− 2∆A(g, ȳ⋆)− ∥P⊥
Φ◦
g◦∥

≥(e) 1− 2∆A(g, ȳ⋆)−
√
Lreg(ϕ; g)

where (a) and (c) follow from Cauchy-Schwarz inequality, (b) follows from Lemma 3.8.7, (d) follows from the

fact that ∥Ā◦∥2 = 1 and (e) follows from Lemma 3.8.3

The next lemma quantifies how much of the top singular directions of PΦ◦Ā◦ are be captured by an ϵ-optimal

representation f (or its matrix version F◦). This is related to Lemma D.10 from HaoChen et al. [2021],

however it differs in the fact that we are decomposing PΦ◦Ā◦ instead of Ā◦, and we have a better dependence

on d on the right hand side. Furthermore, the sub-optimality term is w.r.t. the best representation in the

class Fϕ rather than the unconstrained optimizer of Lspec.

Lemma 3.8.9. Let f ∈ Fϕ ∈ Fϕ be an augmentation representation function. Suppose F◦ ∈ RX×d is

the normalized representation matrix corresponding to f , Ā◦ is the normalized matrix corresponding to

augmentation distribution A and Φ◦ is normalized version of Φ (refer Table 3.2). Let PΦ◦Ā
⊤
◦ = USV ⊤ be

the singular value decomposition, with
√
γ1, . . . ,

√
γD being the singular values in decreasing order. Then for

d′ ≤ d,

∥∥P⊥
F◦
U:d′

∥∥2
F
≤
Lspec(f)− inf

f⋆∈Fϕ

Lspec(f
⋆)

γ2d′ − γ2d+1

≤
Lspec(f)− inf

f⋆∈Fϕ

Lspec(f
⋆)

(γd′ − γd+1)
2 (3.38)

where U:d′ ∈ RX×d′ corresponds to the first d′ columns (and thus singular vectors) of PΦ◦Ā◦.

Proof. We first note, using Lemma 3.8.5, that the contrastive loss can be written as the following matrix

75

factorization objective

Lspec(f) = ∥PΦ◦A◦PΦ◦ − F◦F
⊤
◦ ∥2F = ∥PΦ◦Ā

⊤
◦ Ā◦PΦ◦ − F◦F

⊤
◦ ∥2F = ∥US2V ⊤ − F◦F

⊤
◦ ∥2F

It is is easy to see that γi ≤ 1 for every i, since maxi γi = ∥PΦ◦Ā◦∥22 ≤ ∥Ā◦∥22 ≤ 1. Thus we can invoke

Lemma D.10 from HaoChen et al. [2021], but for matrix PΦ◦A◦PΦ◦ instead of A◦, to argue that

∥P⊥
F◦
ui∥2F ≤

ϵ

(γ2i − γ2d+1)
≤ ϵ

(γi − γd+1)2

where ϵ is the suboptimality Lspec(f) − inf
f⋆
Lspec(f

⋆) = Lspec(f) − inf
f⋆∈Fϕ

Lspec(f
⋆), since the optimal de-

composition for PΦ◦A◦PΦ◦ must lie in the span of Φ◦, and thus f∗ ∈ Fϕ. Adding these for i ∈ [d′] we

get

∥P⊥
F◦
U:d′∥2F ≤

d′∑
i=1

ϵ

(γi − γd+1)2
≤ ϵd′

(γd′ − γd+1)2

This completes the proof.

We now show conditions under which the top d′ directions of the matrix being factorized captures significant

mass of the ground-truth labels.

Lemma 3.8.10. Let Ā◦ be the normalized matrix corresponding to augmentation distribution A and Φ◦ be

the normalized version of Φ (refer Table 3.2). Let PΦ◦Ā
⊤
◦ = USV ⊤ be the singular value decomposition, with

√
γ1, . . . ,

√
γD being the singular values in decreasing order. Then we have,

∥∥V ⊤
d′: ȳ

⋆
◦
∥∥2 ≤ 1−

∥∥PΦ◦Ā
⊤
◦ ȳ

⋆
◦
∥∥2

1− γd′+1
(3.39)

where Vd′: ∈ RX×(|X |−d′) corresponds to the last |X | − d′ columns (and thus singular vectors) of PΦ◦Ā◦.

Proof. We expand out the term 1−
∥∥PΦ◦Ā

⊤
◦ ȳ

⋆
◦
∥∥2 as follows

1−
∥∥PΦ◦Ā

⊤
◦ ȳ

⋆
◦
∥∥2 = 1−

∥∥USV ⊤ȳ⋆◦
∥∥2 = 1−

∥∥SV ⊤ȳ⋆◦
∥∥2 = 1−

D∑
i=1

γi(v
⊤
i ȳ

⋆
◦)2

=(a) ∥ȳ⋆◦∥22 −
D∑
i=1

γi(v
⊤
i ȳ

⋆
◦)2

76

≥(b)
D∑
i=1

(v⊤i ȳ
⋆
◦)2 −

D∑
i=1

γi(v
⊤
i ȳ

⋆
◦)2 =

D∑
i=1

(1− γi)(v⊤i ȳ⋆◦)2

≥(c) (1− γd′+1)

D∑
i=d′+1

(v⊤i ȳ
⋆
◦)2 = (1− γd′+1)∥Vd′:ȳ⋆◦∥2

where (a) follows because ∥ȳ⋆◦∥2 =
∑
x̄DX̄ (x̄)ȳ⋆(x̄) = 1, (b) follows because {vi}Di=1 form a partial orthonormal

basis and (c) is true because γi ≤ 1 for every i and since γi’s are in decreasing order. Rearranging terms

completes the proof

The following lemma connects the eigenvalues of augmentation averaged features that shows up in the final

bound, to the eigenvalues of the matrix being decomposed in the spectral contrastive loss.

Lemma 3.8.11. Let Σ(·) be the covariance operator for features and ϕA denote augmentation averaged

representation obtained from ϕ (see Table 3.2). Let λ1, · · · , λD be the eigenvalues of ID−Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2

in increasing order. Let Ā◦ be the normalized matrix corresponding to augmentation distribution A and Φ◦ be

the normalized version of ϕ (refer Table 3.2). Let PΦ◦Ā
⊤
◦ = USV ⊤ be the singular value decomposition, with

√
γ1, . . . ,

√
γD being the singular values in decreasing order. Then we have,

λi = 1− γi,∀ i ∈ [D] (3.40)

Proof. Let wx, wx̄, wx,x̄, wx|x̄ be as defined in Equations (3.12) to (3.15). Using Φ◦ = D
1
2 Φ and that D is

diagonal with D[x, x] = wx, we first simplify Σ(ϕ) as follows

Σ(ϕ) = E
x∼DX

[
ϕ(x)ϕ(x)⊤

]
=
∑
x∈X

[
wx(x)ϕ(x)ϕ(x)⊤

]
= Φ⊤DΦ = Φ⊤

◦ Φ◦

Next we find the matrix version of ϕA using Ā[x̄, x] = wx̄,x and the following sequence of equalities.

ϕA(x̄) = E
x∼A(·|x̄)

[ϕ(x)] =
∑
x∈X

wx|x̄ϕ(x) =
1

wx̄

∑
x∈X

wx,x̄ϕ(x) =
1

wx̄

∑
x

Ā[x̄, x]Φ[x]

Thus the matrix form of ϕA is ΦA = D̄−1ĀΦ. Similar to the argument for Σ(ϕ), we can then write Σ(ϕA) as

follows

Σ(ϕA) = Φ⊤
AD̄ΦA = (D̄−1ĀΦ)⊤D̄(D̄−1ĀΦ) = Φ⊤Ā⊤D̄−1ĀΦ

77

= Φ⊤D
1
2

(
D− 1

2 Ā⊤D̄− 1
2

)(
D̄− 1

2 ĀD− 1
2

)
D

1
2 Φ

=(a) Φ⊤
◦ Ā

⊤
◦ Ā◦Φ◦

where (a) follows from Equation (3.17). Let MNR⊤ = Φ◦ be the SVD, so PΦ◦ = MM⊤ and Φ⊤
◦ Φ◦ = R⊤N2R.

Using this, we simplify the matrix Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 .

Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 =

(
Φ⊤

◦ Φ◦
)− 1

2 Φ⊤
◦ Ā

⊤
◦ Ā◦Φ◦

(
Φ⊤

◦ Φ◦
)

= (RN2R⊤)−
1
2

(
RNM⊤) Ā⊤

◦ Ā◦
(
MNR⊤) (RN2R⊤)−

1
2

= (RN−1R⊤)
(
RNM⊤) Ā⊤

◦ Ā◦
(
MNR⊤) (RN−1R⊤)

= RM⊤Ā⊤
◦ Ā◦MR⊤

Since {λi}Di=1 are the eigenvalues of ID−Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 , {1−λi}Di=1 are the eigenvalues of Σ(ϕ)−

1
2 Σ(ϕA)Σ(ϕ)−

1
2 =

RM⊤Ā⊤
◦ Ā◦MR⊤. Thus {

√
1− λi}Di=1 are the singular values of RM⊤Ā⊤

◦ and thus M⊤Ā⊤
◦ and thus

MM⊤Ā⊤
◦ = PΦ◦Ā

⊤
◦ . The previous statements are true because multiplication by an orthogonal matrix does

not change the singular values. Thus
√
γi =

√
1− λi, finishing the proof.

Lemma 3.8.12. Let Σ(·) be the covariance operator for features and ϕA denote augmentation averaged

representation obtained from ϕ (see Table 3.2). Let L◦ = I − A◦ be the Laplacian of the augmentation

graph. If the features ϕ are full rank, then the eigenvalues of ID − Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 are the same as the

eigenvalues of L◦.

Proof. Note from Lemma 3.8.1 that the normalized adjacency matrix can be rewritten as A◦ = Ā⊤
◦ Ā◦.

Also from Lemma 3.8.11, we can imply that the eigenvalues of I − PΦ◦Ā
⊤
◦ Ā◦PΦ◦ are the same as the

eigenvalues of ID − Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2 . Since ϕ is full rank, so is the matrix Φ◦, thus PΦ◦ = I. So

I − PΦ◦Ā
⊤
◦ Ā◦PΦ◦ = I − Ā⊤

◦ Ā◦ = I −A◦ = L◦; this completes the proof.

We are now ready to present our main result.

Theorem 3.4.10. Let Σ(·) be the covariance operator for features and ϕA denote augmentation averaged

representation obtained from ϕ (see Table 3.2). Let λ1, · · · , λd be the eigenvalues of Id−Σ(ϕ)−
1
2 Σ(ϕA)Σ(ϕ)−

1
2

78

in increasing order, then for d ≤ D, any representation f ∈ Fϕ, will satisfy

Lclf(f ; ȳ⋆) ≤ min
1≤d′≤d


min

g∈{±1}X
4
(

2∆A(g, ȳ⋆) +
√
Lreg(ϕ; g)

)
λd′+1

+

2d′
(
Lspec(f)− inf

f⋆∈Fϕ

Lspec(f
⋆)

)
(1− λd′)(λd+1 − λd′)2

 (3.41)

where ∆A is defined in Definition 3.4.9 and Lreg in Definition 3.8.2.

Proof. We first sketch an outline of the proof and how different lemmas will be used to prove the final result.

We will use matrix versions of distributions and functions from Table 3.2 throughout the proof. The following

are the main steps:

1. (Matrix factorization) The spectral contrastive loss is shown to be equivalent to a matrix factorization

objective as in HaoChen et al. [2021]. For representations in the class Fϕ, Lemma 3.8.5 shows that

the problem of contrastive learning is reduced to matrix factorization of a projected adjacency matrix

PΦ◦A◦PΦ◦ through the objective Lspec(F) =
∥∥PΦ◦Ā

⊤
◦ Ā◦PΦ◦ − F◦F

⊤
◦
∥∥2
F

+ C, where A◦ is the normalized

matrix corresponding to augmentation distribution A and F◦ is the normalized matrix for representation

function f (refer Table 3.2). Thus the spectral contrastive loss Lspec is attempting to find a rank d

approximation for PΦ◦Ā
⊤
◦ .

2. (ϵ-optimal solutions) If PΦ◦Ā
⊤
◦ = USV ⊤ is the singular value decomposition, then any ϵ-optimal repre-

sentation f (and corresponding F◦), i.e. Lspec(f)− inf
f⋆∈Fϕ

Lspec(f
⋆) ≤ ϵ, can be shown (Lemma 3.8.9) to

capture most of the signal for the top d′ directions of PΦ◦Ā
⊤
◦ , i.e.

∥∥P⊥
F◦
U:d′

∥∥
F

= O(ϵ) is small.

3. (Connecting to downstream) Top d′ directions of PΦ◦Ā
⊤
◦ can be shown to capture a lot of the mass of ȳ⋆

if the features ϕ and augmentation distribution A are “nice” enough, as quantified by Lemma 3.8.10 that

upper bounds ∥Vd′: ȳ⋆◦∥
2
, in conjunction with Lemma 3.8.8 which quantifies these nice properties of A and

features ϕ.

4. (Wrapping up) Both of the above steps will have upper bounds that depend on the singular values

of PΦ◦Ā◦. Relating the singular values of PΦ◦Ā◦ with the eigenvalues of
(
Id − Σ(ϕ)−

1
2 Σ(ϕA)Σ(ϕ)−

1
2

)
through Lemma 3.8.11 completes the proof.

79

Step 1: We can rewrite the contrastive loss in matrix forms using Lemma 3.8.4.

Lspec(f) = Lspec(F◦) =
∥∥A◦ − F◦F

⊤
◦
∥∥2
F
− ∥A◦∥2F =

∥∥Ā⊤
◦ Ā◦ − F◦F

⊤
◦
∥∥2
F
−
∥∥Ā⊤

◦ Ā◦
∥∥2
F

(3.42)

For representation F ∈ Fϕ, we can write it as F = ΦW , thus giving F◦ = D
1
2F = D

1
2 ΦW = Φ◦W . Note that

PΦ◦ = Φ◦Φ†
◦ is the projection matrix of column space of Φ◦; then we have F◦ = PΦ◦F◦. From Lemma 3.8.5,

we know that Lspec(F) =
∥∥PΦ◦Ā

⊤
◦ Ā◦PΦ◦ − F◦F

⊤
◦
∥∥2
F

+ C.

Thus from this we see that the contrastive learning is aiming to learn a good rank d decomposition of the

matrix PΦ◦A◦PΦ◦ = PΦ◦Ā
⊤
◦ Ā◦PΦ◦ . This is a similar to the formulation in HaoChen et al. [2021] where the

matrix A◦ is being factorized instead. The classical result on low-rank approximation of matrices tells us

that the minimizer F◦ will span the top d singular of PΦ◦Ā◦.

Step 2: Let PΦ◦Ā◦ = USV ⊤ be the singular value decomposition, with S = diag(
√
γ1, . . . ,

√
γd) being the

singular values in decreasing order. Then we know that the optimal solution F ⋆◦ be will U:dS:dR for any

orthogonal matrix R. Note that F ⋆◦ ∈ FΦ◦ since the matrix PΦ◦Ā◦ being decomposed is in the span of Φ◦.

This argument can be extended to ϵ-optimal representation f (or matrix F) by invoking Lemma 3.8.9, which

gives us that

∥∥P⊥
F◦
U:d′

∥∥2
F
≤ ϵd′

γ2d′ − γ2d+1

≤ ϵd′

(γd′ − γd+1)
2 (3.43)

This tells us that being close to optimality ensures that the representation captures most of the top d′ singular

directions of U and thus PΦ◦Ā◦, whenever d′ ≤ d. Note that the gap γd′ − γd+1 in singular values determines

how the suboptimality affects the magnitude of “signal” captured.

Step 3: Given that ϵ-optimal solutions can capture the top directions of PΦ◦Ā◦ (or U), we now focus our

attention on what this means for downstream performance. We invoke Lemma 3.8.4 again to upper bound

the downstream classification error Lclf (refer Definition 3.8.2) as

Lclf(f ; ȳ⋆) ≤ Lreg(f ; ȳ⋆) ≤ Lreg(F◦) = inf
w∈Rd

∥∥Ā◦F◦w − ȳ⋆◦
∥∥2
2

(3.44)

≤(a) inf
w∈Rd

∥∥Ā◦PΦ◦F◦w − ȳ⋆◦
∥∥2
2
≤(b) inf

w∈Rd

∥∥Ā◦PΦ◦PF◦w − ȳ⋆◦
∥∥2
2

(3.45)

≤(c) inf
w∈Rd

∥∥V SU⊤PF◦w − ȳ⋆◦
∥∥2
2

(3.46)

80

where (a) follows from the fact that F◦ ∈ FΦ◦ and thus PΦ◦F◦ = F◦, (b) is true since for any w ∈ Rd, there

exists w′ ∈ Rd such that F◦w = PF◦w
′, and (c) uses the singular value decomposition of PΦ◦Ā◦. Thus the

downstream error is upper bounded by a quantity that depends on how much of ȳ⋆◦ is not captured by the

columns of Ā◦PΦ◦PF◦ = V SU⊤PF◦ . We show this quantity is small, by arguing that the top d′ directions of

V captures enough component of ȳ⋆◦ Lemma 3.8.8, and that an ϵ-optimal representation will capture a large

enough portion of the top d′ directions. Note that for any matrix B ∈ Rn×n, B:m ∈ Rm×n denotes the first

m columns of B and Bm: ∈ Rn−m×n denotes that last m columns of B. The calculation is as follows

Lclf(f ; ȳ⋆) ≤ inf
w∈Rd

∥∥V SU⊤PF◦w − ȳ⋆◦
∥∥2
2

= inf
w∈Rd

∥∥V SU⊤PF◦w − V:d′V ⊤
:d′ ȳ

⋆
◦ + Vd′:V

⊤
d′:ȳ

⋆
◦
∥∥2
2

≤(a) 2

(
inf
w∈Rd

∥∥V SU⊤PF◦w − V:d′V ⊤
:d′ ȳ

⋆
◦
∥∥2 +

∥∥Vd′:V ⊤
d′:ȳ

⋆
◦
∥∥2
2

)
= 2 inf

w∈Rd

∥∥V:d′S:d′U
⊤
:d′PF◦w − V:d′V ⊤

:d′ ȳ
⋆
◦
∥∥2 + 2

∥∥Vd′:V ⊤
d′:ȳ

⋆
◦
∥∥2
2

= 2 inf
w∈Rd

∥∥S:d′U
⊤
:d′PF◦w − V ⊤

:d′ ȳ
⋆
◦
∥∥2 + 2

∥∥V ⊤
d′:ȳ

⋆
◦
∥∥2
2

≤(b) 2
∥∥S:d′U

⊤
:d′PF◦U:d′S

−1
:d′ V

⊤
:d′ ȳ

⋆
◦ − V ⊤

:d′ ȳ
⋆
◦
∥∥2 + 2

∥∥V ⊤
d′:ȳ

⋆
◦
∥∥2
2

= 2
∥∥S:d′U

⊤
:d′P

⊥
F◦
U:d′S

−1
:d′ V

⊤
:d′ ȳ

⋆
◦∥2 + 2∥V ⊤

d′:ȳ
⋆
◦
∥∥2
2

≤(c) 2 ∥S:d′∥22
∥∥P⊥

F◦
U:d′

∥∥2
2

∥∥S−1
:d′

∥∥2
2
∥ȳ⋆◦∥

2
+ 2

∥∥V ⊤
d′:ȳ

⋆
◦
∥∥2
2

≤(d)
2
∥∥P⊥

F◦
U:d′

∥∥2
F

γd′
+ 2

∥∥V ⊤
d′:ȳ

⋆
◦
∥∥2
2

where (a) follows from the inequality ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2), (b) follows by a picking a specific value w =

U:d′S
−1
:d′ V:d′ ȳ

⋆
◦ , (c) follows from multiple applications of Cauchy-Schwarz inequality and that ∥V ⊤

:d′ ȳ
⋆
◦∥ ≤ ∥ȳ⋆◦∥

and (d) follows from ∥S:d′∥2 ≤ 1 and ∥S−1
:d′ ∥2 ≤ γ

−1
d′ .

The first term is upper bounded in step 2 already by the sub-optimality of f , while the second term is upper

bounded using Lemma 3.8.10. Plugging these in, we get

Lclf(f ; ȳ⋆) ≤ 2ϵd′

γd′(γd′ − γd+1)2
+

2(1−
∥∥PΦ◦Ā

⊤
◦ ȳ

⋆
◦
∥∥2)

1− γd′+1
≤ 2ϵd′

γd′(γd′ − γd+1)2
+

4(1−
∥∥PΦ◦Ā

⊤
◦ ȳ

⋆
◦
∥∥)

1− γd′+1

where for the last inequality we use that 1 − x2 = (1 − x)(1 + x) ≤ 2(1 − x) for x ∈ [0, 1]. This is further

81

simplified using Lemma 3.8.8 to

Lclf(f ; ȳ⋆) ≤ 2ϵd′

γd′(γd′ − γd+1)2
+

4
(

2∆A(g, ȳ⋆) +
√
Lreg(ϕ; g)

)
1− γd′+1

Step 4: Finally the singular values γi are linked the eigenvalues λi in the theorem statement through

Lemma 3.8.11. Specifically, we have γi = 1− λi, giving us the final result

Lclf(f ; ȳ⋆) ≤
4
(

2∆A(g, ȳ⋆) +
√
Lreg(ϕ; g)

)
λd′+1

+
2ϵd′

(1− λd′)(λd+1 − λd′)2

where ϵ is the suboptimality Lspec(f) − inf
f⋆∈Fϕ

Lspec(f
⋆). The above inequality holds for every g ∈ {±1}X

and for every d′ ∈ [d]. Taking a min over both completes the proof. This completes the proof.

3.8.4 Discussion of upper bound

We dissect our result from Theorem 3.4.10, and compare it to the result from HaoChen et al. [2021], presented

in Theorem 3.4.5. For the representation f ∈ Fϕ, downstream performance is good if

• Lspec(f)− inff⋆∈Fϕ
Lspec(f

⋆) is small : The contrastive loss of f is close to the optimal loss in Fϕ, even

if best in class is far from the absolute minimizer. The equivalent term in Theorem 3.4.5 was the global

sub-optimality of f , i.e. Lspec(f)− inff⋆ Lspec(f
⋆).

• 2∆A(g, ȳ⋆) +
√
Lreg(ϕ; g) is small : This happens if there exists a predictor g ∈ {±1}X on augmentations

that is expressible by the features ϕ and is sufficiently consistent with the ground-truth labels ȳ⋆ on inputs.

Note that if augmentation distributions overlap across classes, then ∆A(g, ȳ⋆) cannot be made small. In

fact, ∆A(g, ȳ⋆) is of the same order as α from Theorem 3.4.5. The extra condition we need here is that√
Lreg(ϕ; g) is small, i.e. despite ϕ not being full rank, it can roughly express a function that is consistent

with ground-truth labels.

• Eigenvalues λd′ and eigen-gaps λd+1 − λd′ are not too small : This is very similar to Theorem 3.4.5, except

there the eigenvalues were of the normalized Laplacian (that only depended on distributions), while here

the eigenvalues also depend on ϕ and thus the function class. Intuitively these values are large if the

82

augmentation graph is dense in the view of the features ϕ.

3.9 Proofs for lower bounds for (approximately) disjoint augmen-

tations

Here we prove that the global minimizer of the contrastive objective can achieve trivial downstream performance

when the augmentation distributions do not overlap.

Theorem 3.9.1. Let N ∈ N be given and let d ∈ N satisfy 3 ≤ d ≤ cN/ log2(N) for a universal constant

c > 0. Let X̄ be a set of |X̄ | = N instances, ȳ⋆ ∈ {±1}N be any labeling function with
∑
i y
⋆
i = 0, and

let D be the uniform distribution over X̄ . Suppose that the augmentation distribution A(· | x̄) is such that

∀x̄, x̄′ ∈ X̄ : supp(A(· | x̄)) ∩ supp(A(· | x̄′)) = ∅. Additionally assume either

• Unnormalized case: representations are unconstrained; or

• Normalized case: representations are constrained (to any set) and there is a fixed source of randomness

W ∈ ∆(W) and mapping T : X̄ ×W → X that is invertible in w for any x̄ such that x ∼ A(· | x̄) ≡

w ∼W,x = T (x̄, w).

Then for any representation f⋆ : X → Rd there exists a representation f̂ : X → Rd such that:

Lcont(f̂) ≤ Lcont(f
⋆), and Lclf(f̂) = min

w∈Rd

1

N

n∑
i=1

1{sign(w⊤f̂(x̄i)) ̸= y⋆i } ≥
1

2
−O(

√
d log(N)/N)

Proof. Let us start by considering the unnormalized case. Let f⋆ : X → Rd be any representation function.

The proof consists of three steps:

1. Show that every instance x̄ ∈ X̄ has an embedding vx̄, such that if we embed x̄ and all of its

augmentations to vx̄ then we obtain a new embedding function f̂ for which Lcont(f̂) is no worse than

Lcont(f
⋆).

2. Let V := {vx̄ : x̄ ∈ X̄}. Show that for any bijection π : V → V, we have Lcont(π ◦ f̂) = Lcont(f̂). In

other words, if we apply a permutation to the embeddings of f̂ we do not change the contrastive loss.

3. Show that there exists some permutation π such that π ◦ f̂ has very high downstream error rate.

83

Part 1. Let us first show that embeds all augmentations of an instance x̄ identically only lowers the

contrastive loss. By convexity, we have that

Lcont(f) := Ex̄1,x̄2∼DE(x,x+)∼A(·|x̄1),x−∼A(·|x̄2)

[
− log

(
exp(f(x)⊤f(x+))

exp(f(x)⊤f(x+)) + exp(f(x)⊤f(x−))

)]
≥ Ex̄1,x̄2∼D

[
− log

(
exp(g(x̄1)⊤g(x̄1))

exp(g(x̄1)⊤g(x̄1)) + exp(g(x̄1)⊤g(x̄2))

)]

where g(x̄) = Ex∼A(·|x̄)[f(x)] is the mean embedding for f . Note that this inequality is strict if f does

not embed all augmentations of an instance identically. If f⋆ did not embed augmentations identically,

we could replace f⋆ with the mean embedding f̂ and reduce the contrastive loss. Thus there exists a set

V := {vx̄ : x̄ ∈ X̄} such that for each x̄, we can assume that f̂ embeds x̄ and all of its augmentations as vx̄.

The same argument also hold for the spectral contrastive loss defined in Equation (3.2), since it is also convex

in the inner products.

Part 2. Let us rename the embedding vectors {vx̄}x̄∈X̄ to V := {vi}Ni=1. Then we can rewrite the objective

as

Lcont(f̂) =
1

N2

∑
i,j

− log

(
exp(v⊤i vi)

exp(v⊤i vi) + exp(v⊤i vj)

)

Any bijection from V to V can be equivalently viewed as a permutation π : [N]→ [N]. We claim that the

above objective is invariant to permuting the indices. This is easy to see, since all pairs (i, j) appear with

equal weighting in the above expression. Thus we see that Lcont(π ◦ f̂) = Lcont(f̂).

Part 3. In the last step of the proof, we use a combinatorial argument to show that there exists some

permutation π with high error rate. First, note that the embedding function π ◦ f̂ embeds x̄i and all of its

augmentations to vπ(i). Thus, the downstream loss when using linear function w is

1

N

n∑
i=1

1{sign(w⊤vπ(i)) ̸= y⋆i } =
1

N

n∑
i=1

1{sign(w⊤vi) ̸= y⋆π−1(i)}

So instead of permuting the embeddings {vi}, we can equivalently permute the labels {y⋆i }. Define:

Y := {(y⋆π(i)))
N
i=1 : π is a permutation }

84

W :=
{

(sign(w⊤vi))
N
i=1 : w ∈ Rd

}
Zτ := {x ∈ {±1}N : ∃b ∈ W s.t.

1

N

N∑
i=1

1{xi ̸= bi} ≤ τ}.

Here Y are the possible labellings we can generate by permuting the indices (which as we discussed is

equivalent to permuting the embedding vectors). W is the labels we can generate via a linear function of the

embeddings. Finally Zτ is the set of labellings that are τ close to the ones that our embeddings can generate.

The statement of the theorem is equivalent to Y \ Zτ ̸= ∅ for some large τ , which means that there is some

permutation of the labels that is far from all linear functions of our embeddings.

We prove this via a combinatorial argument. First, since
∑
i y
⋆
i = 0 (meaning that the classes are balanced),

we have |Y| =
(
N
N/2

)
≥ 2N/2. On the other hand, by Sauer’s lemma,

|W| ≤
d∑
i=0

(
N

i

)
, hence |Zτ | ≤

d∑
i=0

(
N

i

)
·
Nτ∑
i=0

(
N

i

)
(3.47)

Let H(p) := p log2(1/p) + (1 − p) log2(1/(1 − p)) be the binary entropy function, for p ∈ [0, 1]. Standard

bounds on the volume of Hamming cubes Cover [1999] gives that

|Zτ | ≤ 2H(d/N)·N2H(τ)·N .

We also have

(
N

N/2

)
≥ 2H(1/2)·N · 2

eN
≥ 2N−log2(eN/2)

Therefore, a sufficient condition is

H(d/N) +H(τ) <= 1− log2(eN/2)

N

To proceed, we upper bound the entropy functional on the left hand side using the taylor expansion. For the

H(d/N) term we use a first order expansions around p = 1/N , which, by concavity, yields an upper bound.

H(d/N) ≤ H(1/N) +
∂H(x)

∂x

∣∣∣∣
x=1/N

(d/N − 1/N)

85

= 1/N log2(N) + (1− 1/N) log2(N/(N − 1))− log2

(
1/N

1− 1/N

)
· (d/N − 1/N)

= log2(N/(N − 1)) + d/N · log2(N − 1)

≤ 2/N + d log2(N)/N.

The last inequality holds for N ≥ 2. For H(τ) we have the upper bound

H(τ) = H(1/2)− 4

ln(2)
· 1

2
(1/2− τ)2 +

H(3)(ξ)

6
(τ − 1/2)3 ≤ 1− 2

ln(2)
(1/2− τ)2,

Here the first equality is Taylor’s remainder theorem where ξ ∈ [τ, 1/2] and the second holds because the

third derivative is non-negative on the interval [0, 1/2] and we will take τ ≤ 1/2. Putting these together, a

sufficient condition is

2

N
+
d log2(N)

N
+ 1− 2

ln(2)
(1/2− τ)2 ≤ 1− log2(eN/2)

N

⇐ τ <
1

2
−

√
ln(2)

2

(
d log2(N)

N
+

2

N
+

log2(eN/2)

N

)

So the error rate is 1/2−O(
√
d log(N)/N).

For the normalized case, the proof is structurally very similar, except that we cannot rely on the argument in

part 1 to show that f⋆ embeds x̄ and all of its augmentations to the same vector vx̄. However, we only use

the mean vector vx̄ := Ex∼A(·|x̄)[f
⋆(x)] in subsequent steps of the proof and we will see that we can remap

embeddings f⋆(x) so that we (a) preserve the NCE loss of f⋆ and (b) permute all of the mean vectors vx̄.

Let us number the original inputs x̄1, . . . , x̄N and let π : [N] → [N] be any permutation. Let W be the

choices for the random seed and for input x̄i let xi,w = T (x̄i, w) be the augmentation obtained when using

seed w on input x̄. The invertibility of A(x̄i, ·) implies that xi,w ̸= xi,w′ . This means that we can define a

new predictor fπ as

fπ : xi,w 7→ f⋆(xπ(i),w).

Since the examples are sampled uniformly at random and since the random seed is independent of the example,

we can show that Lcont(fπ) = Lcont(f
⋆) using a similar argument to the one we used to show permutation

invariance in the unnormalized case. At the same time, we have changed the mean embeddings so that x̄ is

86

now embedded as vx̄π(i)
. So now we can continue with part 3 to obtain the result.

3.9.1 Approximately disjoint augmentations

Definition 3.9.2. For an augmentation distribution A, we define Bayes-error(A) as the Bayes error of

augmentation classification as the minimum error achievable in the input identification task, i.e. predicting

the input that could have generated an augmentation. Formally we define it as follows:

Bayes-error(A) = inf
g:X→X̄

Ē
x

[
E

x∼A(·|x̄)
[1 {g(x) ̸= x̄}]

]
(3.48)

Lemma 3.9.3. For an augmentation distribution A, the Bayes error from Definition 3.9.2 has the following

expression

Bayes-error(A) = 1− E
x∼D

[∥A(· | x)∥∞] (3.49)

where A(· | x) is the posterior distribution over original inputs given an augmentation x.

Proof. In the above definition of Bayes error, we pick the optimal predictor g to be g(x) = arg maxx̄A(x̄ | x),

which will give us the expression for Bayes error.

Lemma 3.9.4. Consider the augmentation distribution A and its normalized adjacency matrix A◦, and

let λ1, . . . , λ|X | be the eigenvalues of the normalized Laplacian I|X | −A◦ in increasing order. The eigen-gap

λd+1 − λd can be upper bounded as follows:

λd+1 − λd ≤ λd+1 ≤
2ρ̄ Bayes-error(A)

1− d/|X̄ |
(3.50)

where ρ̄ = D̄max

D̄min
is the ratio of max and min probabilities over inputs.

Proof. Let γd be the dth largest eigenvalue of the normalized adjacency matrix A◦ = D− 1
2AD− 1

2 ∈ RX×X ,

where A[x, x′] is the joint probability of augmentations x and x′ appearing as two augmentations of the same

input. Then we know that the ith smallest eigenvalue of I|X | −A◦ is λi = 1− γi. Furthermore we note that

87

A◦ ∈ RX×X has rank at most |X̄ |, since from Table 3.2 we know that A◦ = Ā⊤
◦ Ā◦, where Ā◦ ∈ RX̄×X is the

normalized of the input-augmentation distribution (refer Table 3.2) that has entries Ā◦[x̄, x] = Dsim(x,x̄)√
DX (x)

√
DX̄ (x̄)

.

Thus we can conclude that γi = 0 for |X̄ | < i ≤ |X |. First we prove the statement A◦ = Ā⊤
◦ Ā◦ below

(Ā⊤
◦ Ā◦)[x, x′] =

∑
x̄

Ā◦[x̄, x]Ā◦[x̄, x′] =
∑
x̄

A(x, x̄)√
DX (x)

√
DX̄ (x̄)

A(x′, x̄)√
DX (x′)

√
DX̄ (x̄)

=
1√

DX (x)DX (x′)

∑
x̄

A(x, x̄)A(x′, x̄)

DX̄ (x̄)
=

1√
DX (x)DX (x′)

∑
x̄

DX̄ (x̄)A(x | x̄)A(x′ | x̄)

=
A[x, x′]√
DX (x)DX (x′)

= A◦[x, x′]

We now connect Bayes-error(A) to the normalized augmentation matrix A◦ by using Lemma 3.9.3.

(1− Bayes-error(A))
2

=(a)

(
E
x∼D

[∥A(· | x)∥∞]

)2

≤(b)

(
E
x∼D

[∥A(· | x)∥2]

)2

≤(c) E
x∼D

[
∥A(· | x)∥22

]
=
∑
x∈X
DX (x)

∑
x̄∈X̄

A(x̄ | x)2

=
∑
x̄∈X̄

DX̄ (x̄)
∑
x∈X
A(x | x̄)A(x̄ | x)

=
∑
x̄

DX̄ (x̄)
∑
x

A(x, x̄)

DX̄ (x̄)

A(x, x̄)

DX (x)

=
∑
x̄

DX̄ (x̄)
∑
x

A(x, x̄)√
DX̄ (x̄)DX (x)

A(x, x̄)√
DX̄ (x̄)DX (x)

=
∑
x̄

DX̄ (x̄)
∑
x

Ā◦[x̄, x]Ā◦[x̄, x] =
∑
x̄

DX̄ (x̄)(Ā◦Ā
⊤
◦)[x̄, x̄]

= tr
(
D̄Ā◦Ā

⊤
◦
)

where (a) follows from Lemma 3.9.3, (b) follows from ∥ · ∥∞ ≤ ∥ · ∥2, (c) follows from Jensen’s inequality since

h(x) = x2 is convex. This upper bound can be used to lower bound the Bayes error as follows:

2 Bayes-error(A) ≥ 1− (1− Bayes-error(A))
2

≥(a) 1− tr
(
D̄Ā◦Ā

⊤
◦
)

=(b) tr
(
D̄
)
− tr

(
D̄Ā◦Ā

⊤
◦
)

=(c) tr
(
D̄(I|X̄ | − Ā◦Ā

⊤
◦)
)

≥(d) ∥D̄−1∥−1
2 tr

(
I|X̄ | − Ā◦Ā

⊤
◦
)

= D̄min tr
(
I|X̄ | − Ā◦Ā

⊤
◦
)

(3.51)

where D̄min = minx̄∈X̄ DX̄ (x). In the above sequence, (a) follows the preceeding calculation, (b) follows from

tr(D̄) =
∑
x̄ D̄(x̄) = 1 and (c) follows from linearity of the trace operator. The penultimate step (d) follows

88

from the fact that tr(XY) ≤ ∥X∥2 tr(Y) for symmetric psd matrices X,Y ; a proof for this can be found in

Lemma 18 from Jin et al. [2017]. We now connect this quantity to the eigenvalues of A◦ as follows:

tr
(
I|X̄ | − Ā◦Ā

⊤
◦
)

= |X̄ | − tr
(
Ā◦Ā

⊤
◦
)

=(a) |X̄ | − tr
(
Ā⊤

◦ Ā◦
)

= |X̄ | − tr (A◦)

=(b) |X̄ | −
|X |∑
i=1

γi =(c) |X̄ | −
|X̄ |∑
i=1

γi = |X̄ | −
|X̄ |∑
i=1

(1− λi) =

|X̄ |∑
i=1

λi

≥
|X̄ |∑

i=d+1

λi ≥ (|X̄ | − d)λd+1 (3.52)

where (a) follows from tr(PQ) = tr(QP), (b) is true because γi’s are the eigenvalues of A◦ and because trace

of a symmetric matrix is the sum of its eigenvalues, (c) follows because A◦ is rank |X̄ | and so γi = 0 for

i > |X̄ |. Combining Equations (3.51) and (3.52), we get Bayes-error(A) ≥ 1/2D̄min(|X̄ | − d)λd+1. Note that

D̄min =
D̄min

D̄max
D̄max ≥

D̄min

D̄max
|X̄ |−1 = ρ̄−1|X̄ |−1 (3.53)

Plugging this into the bound gives Bayes-error(A) ≥ 1
2ρ̄

(
1− d

|X̄ |

)
λd+1, giving us

λd+1 ≤
2ρ̄ Bayes-error(A)

1− d/|X̄ |

3.10 Experiment details

In this section, we provide additional notes, tables, and figures on the experiments.

3.10.1 Synthetic experiments: hypercube example

Figure Figure 3.5 shows the results from Section 3.3 in greater detail. This section completes the details

omitted in the main paper.

Data and augmentations. As outlined in Section 3.3, the data are drawn uniformly from the hypercube

in dimension D = 50. The downstream labels are determined by a randomly drawn linear classifier w, whose

first k = 10 coefficients are drawn from N (0, 1); the rest are 0. The training set (under which Lcont is

minimized) is of size 50000; the downstream accuracies under a linear classifier are evaluated on a holdout

89

4.955.005.055.105.155.20
Contrastive loss

50

60

70

80

90

100
Do

wn
st

re
am

 a
cc

ur
ac

y
perfect rep f

spurious rep g

linear
Boolean hypercube example

2-layer MLP
SGD
Adam
Adam+wd

5.0405.0455.0505.0555.060
Contrastive loss

70

75

80

85

90

95

(enlarged around MLP convergence)

Figure 3.5: Full plots for the synthetic experiments, with all contrastive loss minimizers shown from various
function classes (left) and enlarged plot near convergence of trajectories of solutions found by training 2-layed
MLPs with various configurations of first-order optimizers (right).

validation set of 12500. The augmentations are selected by i.i.d. random scaling factors τ ∼ Unif([0, 1]) and

scaling down the last 40 coordinates.

Training and evaluation. The two-layer MLP models used a hidden layer width of 2D = 100, and an output

(i.e. representation) dimension of 20. Adam was run with a learning rate of 10−3, and default parameters

β1 = 0.9, β2 = 0.99. The weight decay parameter for Adam was 0.004, selected from {0.001, 0.002, . . . , 0.007}

based on best transfer performance. SGD was run with learning rate 0.01. Quantitative results are shown in

Table Table 3.1; means and 95% confidence intervals are computed from 10 random seeds. 500 epochs of

pre-training were run, with batch size 512.

3.10.2 CIFAR-10 + SimCLR experiments

For all ResNet experiments, we use the ResNet-18 architecture from PyTorch, with the standard modification

for CIFAR-10 of replacing the first 7× 7 convolution layer with a 3× 3 convolution and removing the maxpool

layer. We use the ViT implementation from https://github.com/lucidrains/vit-pytorch with patch

size: 4, hidden dimension: 256, depth: 6 and number of heads: 8. For MLP-Mixer we use the implementation

from https://github.com/lucidrains/mlp-mixer-pytorch with patch size: 4, hidden dimension: 256 and

number of heads: 8. In each model, the representation for contrastive learning is computed by adding an

extra MLP (projection layer) on top of the base model, as proposed in Chen et al. [2020a]. The projection

layer has 1 hidden layer with 2048 dimensions, followed by a batch norm layer and ReLU non-linearity, and

output dimensionality of 1024.

90

https://github.com/lucidrains/vit-pytorch
https://github.com/lucidrains/mlp-mixer-pytorch

All SimCLR augs Remove crops

Remove crops & flips Add hash pixels

Figure 3.6: Examples of augmented images from CIFAR-10 used in the SimCLR experiments. TL: Full
pipeline of augmentations from SimCLR [Chen et al., 2020a]. TR: Remove random cropping. BL: Remove
random cropping and horizontal flip. BR: Add “hash pixels” to each image, which uniquely identify the
particular example.

Augmentations. The following augmentations are used, inspired by [Chen et al., 2020a]:

transforms.Compose([

RandomResizedCrop(32, scale=(0.3, 1.0)),

RandomHorizontalFlip(p=0.5),

transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),

RandomGrayscale(p=0.2),

GaussianBlur(kernel size=3)

])

For experiments in Figure 3.3 we use the full pipeline of augmentations (top left) and sequentially remove

random cropping (top right) and horizontal flipping (bottom left). Examples of augmented CIFAR-10 images

are shown in Figure Figure 3.6

Contrastive training. We train the model for 1000 epochs, by performing a pass over this training dataset

and minimize the SimCLR contrastive learning loss. We normalize the representations f to unit norm when

computing the SimCLR loss, as is common in many works. Formally, given a batch {(xi, x′i)}Bi=1 of pairs of

91

Table 3.3: Hyperparameter values for experiments on CIFAR-10 trained using ResNet-18.

Hyperparameters Values

Contrastive training

Max epoch 1000
Learning rate 0.001

Optimizer Adam + weight decay (0.0005)
Batch size 512

Representation dimension 1024

Downstream training

Epochs 1000
Learning rate (start) 0.01

Optimizer Adam + weight decay (0.000005)
Scheduler ExponentialLR (gamma: 100.004)
Batch size 1000

augmentations we perform a single update of Adam to minimize the following loss:

L(f) = − 1

2B

n∑
i=1

w(xi, x
′
i)∑n

j=1 w(xi, x′j) +
∑n
j=1,j ̸=i w(xi, xj)

− 1

2B

n∑
i=1

w(xi, x
′
i)∑n

j=1 w(x′i, xj) +
∑n
j=1,j ̸=i w(x′i, x

′
j)
,

(3.54)

where w(x, x′) = exp
(

f(x)⊤f(x′)
τ∥f(x)∥2∥f(x′)∥2

)
and we pick the temperature parameter as τ = 0.5. Training

hyperparameters are presented in Table 3.3.

Downstream evaluation. The downstream evaluation is linear classification accuracy of the learned

representation f to predict the class for an image. The linear classifier is trained for 1000 epochs using Adam;

hyperparameter details are presented in Table 3.3.

For the plots in Figure 3.3 we evaluate every the contrastive loss and downstream accuracy every 5 epochs of

training and stop when the average test contrastive loss (window size of 5) is minimized.

Hash experiment.

To enforce the disjoint augmentation regime, we select a set of 16 pixels, and modify an augmentation by

replacing those 16 pixels (8 bits each) with an 128-bit MD5 hash of the image that generated the augmentation.

This way the original image hash (and thus its identity) can be recovered from any of its augmentations. The

result of training on this small variation of the standard pipeline is presented in Figure 3.3 (bottom right).

Some examples of this augmentation is shown in Figure 3.6 (bottom right).

92

0 50 100 150 200
0

20

40

60

80

100

Di
sjo

in
tn

es
s c

lf.
 a

cc
ur

ac
y

All SimCLR augs

0 50 100 150 200
0

20

40

60

80

100
Remove crops

0 50 100 150 200
Training epochs

0

20

40

60

80

100

Di
sjo

in
tn

es
s c

lf.
 a

cc
ur

ac
y

Remove crops & flips

0 50 100 150 200
Training epochs

0

20

40

60

80

100
Add hash pixels to images

Aug. distribution Classifier acc. (%)
CIFAR-10 + SimCLR 99.623 ± 0.061

Remove crops 99.981 ± 0.024
Remove crops & flips 99.974 ± 0.038

Add hash pixels 99.935 ± 0.033

Figure 3.7: Demonstration of augmentation disjointness for CIFAR-10 with SimCLR augmentations. As
described in Section 3.5.2 we train classifiers to distinguish between 5000 same-class examples, for each class.
These classifiers reach ≈ 100% accuracy (averaged over 10 classes) in the 5000-way classification task, in
all 4 settings from Figure Figure 3.3 (standard deviations shown over 10 random epoch picked close to end
of training). This is evidence that these distributions are close to the disjoint regime, despite contrastive
learning leading to good downstream accuracy.

Label-orthogonal training.

We largely follow the same procedure as standard training, but modify the representation f(x) for an

augmentation before passing it to the contrastive loss. In particular for an augmentation and label pair

(x, y), compute the representation f(x) as usual. Before passing it into the contrastive loss, convert apply

the transformation f ′(x) = f(x)− µy, where µy is the mean representation for augmentations from class y.

µy is computed at every step, using augmentations from a memory bank of 10240 pairs of (x,y) collected

over training. Then f ′(x) is passed into the SimCLR loss in Equation (3.54) instead of f(x) and everything

else remains the same. The subtraction of the mean µy from the representation make the representation

orthogonal to the labels, thus declining its ability to linearly classify images. The result of training with this

procedure is presented in Figure 3.3 (top left). Note that the implicit assumption in the calculation of the

contrastive loss is that different classes do not share any augmentations, i.e. the labels are almost invariant

to standard augmentations.

93

Table 3.4: Hyperparameter values for experiments on AG News. Unless specified, the same hyperparameter
value is used for both contrastive learning and the downstream classification task.

Hyperparameters Values
Max epoch 100

Learning rate for contrastive learning 0.01 for BoW, 0.001 otherwise
Learning rate for downstream linear classification 0.01

Patience 10
Batch size 128

Representation dimension 768
Gradient clipping norm 2.5

3.10.3 Experiments on text domain

Experimental Setup. We evaluate on the AG News classification dataset Zhang et al. [2015]. This dataset

contains 4 classes (“World”, “Sports”, “Business”, “Sci/Tech”) and each class contains news articles from

that topic. We use the tokenizer from torchtext library. If a token sequence is of length more than 60, we

then trim it to its first 60 tokens, leading to a vocabulary size of 11970.

We perform contrastive learning similar to SimCLR. We train the model in epochs and in each epoch we sample

pairs of augmentation for 50,000 randomly chosen pieces of text in the training dataset. We then perform a

single pass over this dataset and minimize the SimCLR contrastive learning loss from Equation (3.54), with

temperature τ = 1. The downstream evaluation task is to simply predict the class given the text.

At the start of contrastive learning, we create a held-out validation set of pairs of augmentation sampled for

10,000 randomly chosen examples from the original validation set. At the end of each epoch of contrastive

learning, we evaluate the model on this held-out validation set by computing the SimCLR loss. We also train

a linear classifier on top of fixed model representations, to evaluate the model on the downstream classification

task. During the downstream training, we evaluate the model at the end of epoch on the validation set and

report the linear classifier with the best validation loss. We stop training if the best validation loss does not

improve for κ consecutive epochs where κ is the patience hyperparameter, or if we hit a maximum number of

epochs. Hyperparameter values are listed in Table Table 3.4.

Model Details. We evaluate three models on the AG News task. All models encode a given text to a

d-dimensional representation. The first model is a bag of word (BoW) that trains a word embedding matrix

and simply returns the average word embedding of tokens in the text. The second model is Gated Recurrent

Unit (GRU), which is a recurrent neural network Chung et al. [2014]. The GRU is uni-directional, uses a 300

94

5.35.45.55.65.7
20

40

60

80

100

Do
wn

st
re

am
 a

cc
ur

ac
y

AG News, Drop 30%

BoW
GRU
Transformer

5.35.45.55.65.7
20

40

60

80

100
Drop 30% + permute

5.45.65.86.06.2
Contrastive loss

20

40

60

80

100

Do
wn

st
re

am
 a

cc
ur

ac
y

Split

5.45.65.86.06.2
Contrastive loss

20

40

60

80

100
Split or full

Figure 3.8: Contrastive loss → accuracy transfer plots for AG News with bag-of-words (BoW), GRU and
Transformer architectures with representation dimensionality d = 128. These plots use the average rep-
resentation of augmentations fA for downstream evaluation rather than the representation f directly.
Augmentations in each case are as follows: TL: Drop random 30% of tokens. TR: Drop random 30% of
tokens and randomly permute the rest. BL: Either the first half or second half of the input. BR: Either
the first half, second half or the full input. The plots here are almost identical to the plots from Figure 3.4,
suggesting that the distribution shift from augmentations to unaugmented inputs from contrastive learning
to downstream evaluation does not play a big role.

dimensional input word embedding, dropout of 0.3, hidden dimension of 768, has 4 layers, and linearly

maps the hidden state representation of the final token from the layer to d-dimensions. The final model is a

Transformer [Vaswani et al., 2017], which is the base model for many state-of-the-art neural networks in

NLP. The Transformer is uni-directional, hidden dimension of 128, has 4 layers and 4 attention heads, and

linearly maps the hidden state representation of the final token from the layer to d-dimensions.

Robust evaluation.

Standard practice is to train a representation f on augmentations x, and use the same function to compute

representations for unaugmented inputs x̄. This is the strategy we employ for the plots in Figure 3.4. However,

as discussed in Section 3.2, this causes an obvious distribution shift, since the representations have been

trained to output something meaningful for unaugmented inputs. This could be a potential reason for the

brittle transfer performance of GRU and Transformer. However we verify that this distribution shift is not

the reason, by instead evaluating downstream performance using the augmentation-averaged representation

95

fA, as defined in Equation (3.4). These robust evaluation transfer plots are presented in Figure 3.8, which

look almost identical to those in Figure 3.4.

Visualizing 2-dimensional representations.

We train contrastive learning models with output dimensionality d = 2 and visualize the contrastive loss →

accuracy in Figure 3.9. Firstly we note that the trends are not exactly the same as in Figure 3.4 that plot the

same for d = 128. Most interestingly, for the split augmentation, GRU does not perform well on downstream

accuracy for d = 128, but it does almost as well as BoW at d = 2. This kind of non-monotonic behavior w.r.t.

representation dimensionality d is also unexplained by existing theory.

Next we visualize the learned representations for augmentations from different classes (normalized to unit

norm) in Figure 3.10, for the drop augmentation. We sample 100 inputs per class and 4 augmentations

per input, and encode them with the trained BoW, gru and Transformer models. For clear visualization,

we plot the 4 augmentations per image with the same color, with each of them plotted at different

radii (1.0, 1.133, 1.267, 1.4). We observe that the BoW representations look roughly linearly separable since

different classes tend to roughly occupy different quadrants of the circle, corroborating its good downstream

performance from Figure 3.9. It does so by roughly bringing augmentations of the same input (points with

the same color) closer to each, although the representations not perfectly augmentation invariant. The GRU

representations in every class, on the other hand, are spread out and brings augmentations very closer to

each other than BoW representations, reminiscent of the uniformity and alignment properties from Wang and

Isola [2020]. However these representations are not linearly separable. The Transformer representations are

intriguing since they are not uniformly spread out, but almost perfectly augmentation invariant. Furthermore

the representation distributions for different classes are identical to each other, justifying its bad downstream

performance from Figure 3.9. This phenomenon aligns with our lower bound Lemmas 3.4.2 and 3.4.3, whose

proofs reveal how such spurious representations can be constructed.

96

5.55.65.75.8
20

40

60

80

100

Do
wn

st
re

am
 a

cc
ur

ac
y

AG News, Drop 30%

BoW
GRU
Transformer

5.55.65.75.8
20

40

60

80

100
AG News, Drop 30% + permute

5.65.86.06.26.4
Contrastive loss

20

40

60

80

100

Do
wn

st
re

am
 a

cc
ur

ac
y

AG News, Split

5.65.86.06.26.4
Contrastive loss

20

40

60

80

100
AG News, Split or full

Figure 3.9: Contrastive loss → accuracy transfer plots for AG News with bag-of-words (BoW), GRU and
Transformer architectures with representation dimensionality d = 2. Augmentations in each case are as
follows: TL: Drop random 30% of tokens. TR: Drop random 30% of tokens and randomly permute the rest.
BL: Either the first half or second half of the input. BR: Either the first half, second half or the full input.
In all cases BoW representation does quite well downstream (∼ 80%), but either Transformer or both GRU

and Transformer demonstrate brittleness of transfer for different augmentations.

97

AG News, Drop 30%

1 0 1
Class 0

1

0

1

1 0 1
Class 1

1

0

1

1 0 1
Class 2

1

0

1

1 0 1
Class 3

1

0

1

BoW

1 0 1
Class 0

1

0

1

1 0 1
Class 1

1

0

1

1 0 1
Class 2

1

0

1

1 0 1
Class 3

1

0

1

GRU

1 0 1
Class 0

1

0

1

1 0 1
Class 1

1

0

1

1 0 1
Class 2

1

0

1

1 0 1
Class 3

1

0

1

Transformer

Figure 3.10: We plot representations of augmentations from different classes, for BoW, GRU and Transformer

respectively. The 30% drop augmentation is used for these plots. While all representations are supposed to
be normalized to unit norm, for clear visualization, we plot the 4 augmentations per image with the same
color, with each of them plotted at different radii (1.0, 1.133, 1.267, 1.4). We observe that GRU and
Transformer are quite augmentation invariant, but are not linearly separable. See Section 3.10.3 for more
discussion about this.

98

AG News, Drop 30% + permute

1 0 1
Class 0

1

0

1

1 0 1
Class 1

1

0

1

1 0 1
Class 2

1

0

1

1 0 1
Class 3

1

0

1

BoW

1 0 1
Class 0

1

0

1

1 0 1
Class 1

1

0

1

1 0 1
Class 2

1

0

1

1 0 1
Class 3

1

0

1

GRU

1 0 1
Class 0

1

0

1

1 0 1
Class 1

1

0

1

1 0 1
Class 2

1

0

1

1 0 1
Class 3

1

0

1

Transformer

Figure 3.11: We plot representations of augmentations from different classes, for BoW, GRU and Transformer

respectively. The 30% drop + permute augmentation is used for these plots. While all representations are
supposed to be normalized to unit norm, for clear visualization, we plot the 4 augmentations per image
with the same color, with each of them plotted at different radii (1.0, 1.133, 1.267, 1.4). We observe
that BoW representations are roughly linearly classifiable, GRU representations are somewhat classifiable while
Transformer are quite augmentation invariant, but not linearly separable.

99

Part II

Self-Prediction Methods

100

Chapter 4

Predicting What You Already Know

Helps: Provable Self-Supervised

Learning

In this chapter we study self-prediction based SSL methods, where the idea is to pre-train a model to predict

part of an input from the rest of it. Self-prediction methods include ideas like predicting a missing image

patch, recovering the color channels of an image from context, or predicting missing words in text. It is a priori

puzzling as to why predicting this known information helps in learning representations effective for downstream

tasks. We posit a mechanism exploiting the statistical connections between certain reconstruction-based

pretext tasks that guarantee to learn a good representation. Formally, we quantify how the approximate

independence between the components of the pretext task (conditional on the label and latent variables) allows

us to learn representations that can solve the downstream task by just training a linear layer on top of the

learned representation. We prove the linear layer yields small approximation error even for complex ground

truth function class and will drastically reduce labeled sample complexity. Next, we show a simple modification

of our method leads to nonlinear CCA, analogous to the popular SimSiam algorithm, and show similar

guarantees for nonlinear CCA. This chapter is based on previously published work [Lee et al., 2021].

101

4.1 Introduction

Self-supervised learning creates pseudo labels solely based on input features, and solves auxiliary prediction

tasks (or pretext tasks) in a supervised manner. However, the underlying principles of self-supervised learning

are mysterious since it is a-priori unclear why predicting what we already know should help. We thus raise

the following question:

What conceptual connection between pretext and downstream tasks ensures good representations? What is a

good way to quantify this?

As a thought experiment, consider a simple downstream task of classifying desert, forest, and sea images. A

meaningful pretext task is to predict the background color of images (known as image colorization [Zhang

et al., 2016]). Denote X1, X2, Y to be the input image, color channel, and the downstream label respectively.

Given knowledge of the label Y , one can possibly predict the background X2 without knowing much about

X1. In other words, X2 is approximately independent of X1 conditional on the label Y . Consider another

task of inpainting [Pathak et al., 2016] the front of a building (X2) from the rest (X1). While knowing the

label “building” (Y) is not sufficient for successful inpainting, adding additional latent variables Z such as

architectural style, location, window positions, etc. will ensure that variation in X2 given Y, Z is small. We

can mathematically interpret this as X1 being approximate conditionally independent of X2 given Y,Z.

The main insight that we exploit in this work is that with approximate conditional independence (as in the

above examples), a method that predicts X2 from X1 will inadvertently implicitly encode and learn to predict

Y (and Z) from X1 as an intermediate step, and then predict X2 from Y 1. Building upon this insight, we

make the following contributions.

Contributions. The goal of this work, as in statistical learning theory, is to investigate the statistical

connections between the random variables of input features (in this work (X1, X2)) and downstream labels Y ,

and show how specific connections can guarantee a successful learning procedure. For self-supervised learning

(SSL), success is measured using the following 2 notions, 1) expressivity, i.e. does the learned representation

from SSL have the ability to express the ground truth prediction function for labels Y , and 2) sample

complexity, i.e. can it do so with way fewer labeled samples than what would be required without SSL.

In this work, we establish theoretical analysis for self-supervised learning fulfilling these goals.

1This is formally demonstrated in the proof sketch of Lemma 4.3.2.

102

• We provide generalization guarantees for a class of self-supervised algorithms under a statistical assumption

of approximate conditional independence (ACI). Specifically, we show

– small representation error: the learned representation can almost linearly separate downstream targets

– small estimation error: learning a predictor for downstream tasks require very few number of samples.

• Our analysis focused on reconstruction-based SSL methods (Zhang et al. [2016], Pathak et al. [2016], Devlin

et al. [2019], Grill et al. [2020]) is presented in sections Section 4.3 and Section 4.4. In Section 4.5, we

instantiate the bound from the analysis in the topic modeling framework, a standard generative model for

text [Papadimitriou et al., 2000, Hofmann, 1999], where X1 and X2 are chosen to be two halves of a text

document. Although data can be sampled from a potentially infinite mixtures of k underlying topics, an

appropriate ACI assumption can be shown that leads to a downstream sample complexity of O(k).

• We also build the connection and extend the analysis to a variant of the SimSiam [Chen and He, 2021]

method, a non-linear canonical correlation analysis (CCA) method for self-supervised learning in Section 4.6.

Further connecting this to alternating conditional expectation (ACE) algorithm [Breiman and Friedman,

1985], we show how this problem is related to decomposing the conditional distribution X2 | X1.

• We quantify our notion of ACI by a certain partial covariance matrix (Definition 4.4.2) and our risk bound

scales linear with it. We verify this and other aspects of our main generalization bound (Theorem 4.4.4)

using simulation experiments in Section 4.7. We also find that pretext task experimentally helps when CI

is approximately enforced in text domain. We further demonstrate on a real-world image dataset that a

pretext task-based linear model performs at least as well as many baselines.

4.1.1 Related work

Self-supervised learning (SSL) methods in practice: There has been a flurry of self-supervised methods

lately. One class of methods reconstruct images from corrupted or incomplete versions of it, like denoising

auto-encoders [Vincent et al., 2008], image inpainting [Pathak et al., 2016], and split-brain autoencoder

[Zhang et al., 2017b]. Pretext tasks are also created using visual common sense, including predicting rotation

angle [Gidaris et al., 2018], relative patch position [Doersch et al., 2015], recovering color channels [Zhang

et al., 2016], solving jigsaw puzzle games [Noroozi and Favaro, 2016], and discriminating images created from

distortion [Dosovitskiy et al., 2014]. We refer to the above procedures as reconstruction-based SSL. Another

103

popular paradigm is contrastive learning [Chen et al., 2020a,b]. The idea is to learn representations that

bring similar data points closer while pushing randomly selected points further away [Wang and Gupta, 2015,

Logeswaran and Lee, 2018, Arora et al., 2019] or to maximize a contrastive-based mutual information lower

bound between different views [Hjelm et al., 2019, Oord et al., 2018, Tian et al., 2020a]. A popular approach

for text domain is based on language modeling where models like BERT and GPT create auxiliary tasks

for next word predictions [Devlin et al., 2019, Radford et al., 2018]. The natural ordering or topology of

data is also exploited in video-based [Wei et al., 2018, Misra et al., 2016, Fernando et al., 2017], graph-based

[Yang et al., 2021, Hu et al., 2020] or map-based [Zhang et al., 2019] SSL. For instance, the pretext task is to

determine the correct temporal order for video frames as in [Misra et al., 2016].

Theory for SSL: While we theoretically study reconstruction-based SSL, prior work has different flavors

of theoretical results for different kinds of SSL methods. Most relevant are the guarantees for repre-

sentation learning using SSL methods on downstream tasks that just learn a linear classifier on top of

the learned representations. Arora et al. [2019] shows guarantees for representations from a contrastive

learning objective: Lcont1 (ψ) = E(X1,X2),X′
2
[log(1 + e−ψ(X1)

⊤ψ(X2)+ψ(X1)
⊤ψ(X′

2))]. Under a class conditional

independence assumption, i.e. X1 ⊥ X2 | Y , they show that representation ψ that does well on con-

trastive objective, i.e. Lcont1 (ψ) ≤ ϵ, will have O(ϵ) linear classification loss on the average binary task

involving pairs of classes (y1, y2). However, their analysis cannot handle the general case of approximate

conditional independence. Recently, Tosh et al. [2021b] show that contrastive learning representations

can linearly recover continuous functions of the underlying topic posterior under a topic modeling assump-

tion for text. While their assumption bears similarity to ours, the assumption of independent sampling

of words is strong and does not generalizable to other domains like images. Most relevant is a concur-

rent work [Tosh et al., 2021a] that shows guarantees for a contrastive learning objective that looks like

Lcont2 (ψ, η) = E(X1,X2),X′
2

[
log(1 + e−ψ(X1)

⊤η(X2)) + log(1 + eψ(X1)
⊤η(X′

2))
]
, with a multi-view redundancy

assumptions that is very similar to our ACI assumption. We take a closer look at their assumption in Sec-

tion 4.14.2. All the above objectives are different from the simple reconstruction-based objective we consider:

L(ψ) = E(X1,X2)

[
∥X2 − ψ(X1)∥2

]
. Saunshi et al. [2021] show guarantees for representations learned using

language modeling on sentence classification tasks. Some more recent work [Tsai et al., 2020, Mitrovic et al.,

2021, Tian et al., 2020c, Wang and Isola, 2020] provide theoretical understanding on SSL respectively based

on causality, mutual information, gradient-descent dynamics, and alignment/uniformity of representations,

without explicit risk bounds for downstream tasks. There is a mutual information maximization view of con-

104

trastive learning, but Tschannen et al. [2020] points out issues with it. Previous attempts to explain negative

sampling [Mikolov et al., 2013b] based methods use the theory of noise contrastive estimation [Gutmann

and Hyvärinen, 2010, Ma and Collins, 2018] to show asymptotic guarantees, without explicit connections

to downstream tasks. CI is also used in sufficient dimension reduction [Fukumizu et al., 2009, 2004], while

CI and redundancy assumptions on multiple views [Kakade and Foster, 2007, Ando and Zhang, 2007] are

used to analyze a canonical-correlation based dimension reduction algorithm and also for self-supervised

learning algorithms like co-training [Blum and Mitchell, 1998]. Finally, Alain and Bengio [2014], Vincent

[2011] provide a theoretical analysis for denoising auto-encoder.

4.1.2 Overview of results:

Section 4.2 introduces notation, setup, and the self-supervised learning procedure considered in this work.

In Section 4.3, we analyze downstream sample complexity under exact CI and unlimited labeled data to

highlight the key ideas. Section 4.4 presents our main result with relaxed conditions: under ACI with latent

variables, and assuming finite samples in both pretext and downstream tasks, for various function classes,

and both regression and classification tasks. Section 4.5 demonstrates our results with an example in the

setting of topic modeling. In Section 4.6 we extend our results to self-supervised tasks that enforce two views

of data to have similar representations, or namely SimSiam Chen and He [2021]. Experiments verifying our

theoretical findings are in Section 4.7. Proofs of most results are in the Appendix.

4.2 Preliminary

4.2.1 Notation

We use lower case symbols (x) to denote scalar quantities, bold lower case symbols (x) for vector values,

capital letters (X) for random variables, and capital and bold letters X for matrices. PX denotes the

probability law of random variable X, and the space of square-integrable functions with probability P is

denoted by L2(P). We use standard O notation to hide universal factors and Õ to hide log factors. ∥ · ∥

stands for ℓ2-norm for vectors or Frobenius norm for matrices.

Linear conditional expectation. EL[Y |X] denotes the prediction of Y with linear regression:

EL[Y |X = x] := W ∗x + b∗, where W ∗, b∗ := arg min
W ,b

E[∥Y −WX − b∥2].

105

In other words, EL[Y |X] denotes the best linear predictor of Y given X. We also note that E[Y |X] ≡

arg minf E[∥Y − f(X)∥2] is the best predictor of Y given X.

(Partial) covariance matrix. For random variables X,Y , we denote ΣXY to be covariance matrix of X

and Y . For simplicity in most cases, we assume E[X] = 0 and E[Y] = 0; thus we do not distinguish E[XY]

and ΣXY . The partial covariance matrix between X and Y given Z is:

ΣXY |Z :=cov{X − EL[X|Z], Y − EL[Y |Z]} ≡ ΣXY −ΣXZΣ
−1
ZZΣZY , (4.1)

which captures the correlation between X and Y setting aside the effect of Z.

Sub-gaussian random vectors. X ∈ Rd is ρ2-sub-gaussian if for every fixed unit vector v ∈ Rd, the

variable v⊤X is ρ2-sub-gaussian, i.e., E[es·v
⊤(X−E[X])] ≤ es2ρ2/2 (∀s ∈ R).

4.2.2 Setup and methodology

We denote by X1 the input variable, X2 the target random variable for the pretext task, and Y the label for

the downstream task, with X1 ∈ X1 ⊂ Rd1 , X2 ∈ X2 ⊂ Rd2 and Y ∈ Y ⊂ Rk. If Y is finite with |Y| = k, we

assume Y ⊂ Rk is the one-hot encoding of the labels. PX1X2Y denotes the joint distribution over X1×X2×Y .

PX1Y , PX1 denote the corresponding marginal distributions. Our proposed self-supervised learning aims to

fulfill the following two steps:

Step 1 (pretext task): Learn a representation ψ(x1) close to ψ∗ := arg ming∈H E∥X2 − g(X1)∥2, where H

can vary for different settings that we will specify and discuss later.

Step 2 (downstream task): Perform linear regression on Y with ψ(X1), i.e. f(x1) := (W ∗)⊤ψ(x1), where

W ∗ ← arg minW EX1,Y [∥Y −W⊤ψ(X1)∥2]. Namely we learn f(·) = EL[Y |ψ(·)].

We study this simplified version in the main text, where in practice, the SSL procedure may utilize an

encoder-decoder structure, while the downstream task uses both X1 and X2 to predict Y . We incorporate

these extensions in Section 4.11.3 and Section 4.14.3.

With finite samples, performance of a learned representation ψ on the downstream task depends on the

following quantities that capture expressivity and sample complexity respectively:

Approximation error indicates whether Y is linearly separable by the learned representation ψ, thus

106

measuring expressivity. We measure this by comparing Wψ(X1) to the optimal predictor f∗ := E[Y |X1 = x1].

Denote eapx(ψ) = minW E[∥f∗(X1)−Wψ(X1)∥2]. This gives a measure of how well ψ can linearly predict

Y when given infinite samples for the task.

Estimation error measure sample complexity of ψ on the downstream task and assume access to n2 i.i.d.

samples (x
(1)
1 ,y(1)), · · · , (x(n2)

1 ,y(n2)) drawn from PX1Y . We express the n2 samples collectively as Xdown
1 ∈

Rn2×d1 , Y ∈ Rn2×k and overload notation to say ψ(Xdown
1) =

[
ψ(x

(1)
1)|ψ(x

(2)
1) · · · |ψ(x

(n2)
1)

]⊤
∈ Rn2×d2 .

We perform linear regression on the learned representation ψ and measure excess risk, that incorporates both

approximation and estimation errors.

Ŵ ← arg min
W

1

2n2
∥Y − ψ(X1)W ∥2F ; ERψ(Ŵ) :=

1

2
E∥f∗(X1)− Ŵ⊤ψ(X1)∥22.

4.3 Guaranteed recovery with conditional independence

In this section, we focus on the case where the input X1 and pretext target X2 are conditionally independent

(CI) given the downstream label Y . While this is a strong assumption that is rarely satisfied in practice, it

helps us understand the role of CI with clean results and builds up to our main results with ACI with latent

variables in Section 4.4. As a warm-up, we show how CI helps when (X1, X2, Y) are jointly Gaussian to give

us a flavor for the results to follow in Section 4.10. We then analyze it for general random variables under two

settings: (a) when the function class used for ψ is universal, (b) when ψ is restricted to be a linear function of

given features. For now we assume access to a large amount of unlabeled data so as to learn the optimal ψ∗

perfectly and this will be relaxed later in Section 4.4. The general recipe for the results is as follows:

1. Find a closed-form expression for the optimal solution ψ∗ for the pretext task.

2. Use conditional independence to show that optimal f∗ is linear in ψ∗, i.e., eapx(ψ∗) is small.

3. Exploit the low rank structure of ψ∗ to show small estimation error on downstream tasks.

Data assumption. Suppose Y = f∗(X1) + N , where f∗ = E[Y |X1] and E[N] = 0. We assume N is

σ2-subgaussian. For simplicity, we assume non-degeneracy: ΣXiXi
, ΣY Y are full rank.

Assumption 4.3.1. Let X1 ∈ Rd1 , X2 ∈ Rd2 be random variables from some unknown distribution. Let label

Y ∈ Y be a discrete random variable with k = |Y| < d2. We assume conditional independence: X1⊥X2|Y .

107

Here Y can be interpreted as the multi-class labels where k is the number of classes. For regression problems,

one can think about Y as the discretized values of continuous labels. We do not specify the dimension for Y

since Y could be arbitrarily encoded but the results only depend on k and the variance of Y (conditional on

the input X1).

4.3.1 Universal function class.

Suppose we learn the optimal ψ∗ among all measurable functions The optimal function ψ∗ in this case is

naturally given by conditional expectation: ψ∗(x1) = E[X2|X1 = x1]. We show that CI implies that ψ∗ is

good for downstream tasks, which is not apriori clear.

Lemma 4.3.2 (Approximation error). If random variables X1, X2, Y satisfy Assumption 4.3.1, and A ∈

RY×d2 with Ay,: := E[X2|Y = y] has rank k = |Y|. Then f∗ ≡W ∗ψ∗, i.e., eapx(ψ
∗) = 0.

This tells us that although f∗ could be nonlinear in x1, it is guaranteed to be linear in ψ∗(x1).

Proof Sketch of Lemma 4.3.2. Lemma is proved by law of total expectation:

ψ∗(·) := E[X2|X1] =E[E[X2|X1, Y]|X1] = E[E[X2|Y]|X1] (uses CI)

=
∑
y

P (Y = y|X1)E[X2|Y = y] =: f(X1)⊤A,

where f(x1)y = P (Y = y|X1 = x1), and A ∈ RY×d2 satisfies Ay,: = E[X2|Y = y]. One could see that

through predicting X2, due to the CI assumption, ψ∗ has implicitly encoded the information of Y |X1. Finally

due to the fact that matrix A is full rank, we get that f∗ is linear in ψ∗ as well.

We see that besides CI, another important property is E[X2|Y] being rank k. This means X2 is correlated

with every instance of Y , and thus captures information of every prediction class. This is naturally a necessary

assumption for X2 to be a reasonable pretext task for predicting Y . Note that this assumption does not

trivialize the problem and that even though ψ is designed to predict X2, it can still be a better representation

than X2 for downstream tasks. Note that Y does not have to be linear in X2 but is proven to be linear in ψ,

since ψ learns to ignore some information in X2 that is irrelevant to Y . We provide this simple example for

better understanding:

Example 4.3.3. Let Y ∈ {−1, 1} be binary labels, and X1, X2 be 2−mixture Gaussian random variables

108

with X1 ∼ N (Y µ1, I), X2 ∼ N (Y µ2, I). In this example, X1⊥X2|Y . Although E[Y |X2] and E[Y |X1] are

not linear, E[Y |ψ] is linear: ψ(x1) = P (Y = 1|X1 = x1)µ2 − P (Y = −1|X1 = x1)µ2 and f∗(x1) = P (Y =

1|X1 = x1)− P (Y = −1|X1 = x1) ≡ µT2 ψ(x1)/∥µ2∥2.

Given that ψ∗ is good for downstream, we now care about the sample complexity. We will need to assume

that the representation has some nice concentration properties. We make an assumption about the whitened

data ψ∗(X1) to ignore scaling factors.

Assumption 4.3.4. We assume the whitened feature variable U := Σ
−1/2
ψ ψ(X1) is a ρ2-subgaussian random

variable, where Σψ = E[ψ(X1)ψ(X1)⊤].

We note that all bounded random variables satisfy sub-gaussian property.

Theorem 4.3.5 (General conditional independence). Fix a failure probability δ ∈ (0, 1), under the same

assumption as Lemma 4.3.2 and Assumption 4.3.4 for ψ∗, if additionally n2 ≫ ρ4(k + log(1/δ)), then the

excess risk of the learned predictor x1 → Ŵ⊤ψ∗(x1) on the downstream task satsifies

ERψ∗ [Ŵ] ≤ Õ
(
k
n2
σ2
)
2

Remark 4.3.6. This analysis assumes we could perfectly learn ψ∗ = E[X2|X1] disregarding the number of

samples in the SSL phase (unlabeled data is cheap to obtain). Here by sample complexity we refer to the

labeled data (X1, Y). We defer the effect of imprecise representation ψ to Section 4.4.

4.3.2 Function class induced by feature maps.

Given feature map ϕ1 : X1 → RD1 , we consider the function class H1 = {ψ : X1 → Rd2 |∃B ∈ Rd2×D1 , ψ(x1) =

Bϕ1(x1)}.

Claim 4.3.7 (Closed form solution). The optimal function in H is ψ∗(x1) = ΣX2ϕ1Σ
−1
ϕ1ϕ1

ϕ1(x1), where

ΣX2ϕ1
:= ΣX2ϕ1(X1) and Σϕ1ϕ1

:= Σϕ1(X1)ϕ1(X1).

We again show the benefit of CI, but only comparing the performance of ψ∗ to the original features ϕ1. Since

ψ∗ is linear in ϕ1, it cannot have smaller approximation error than ϕ1. However CI will ensure that ψ∗ has

the same approximation error as ϕ1 and enjoys better sample complexity.

Lemma 4.3.8 (Approximation error). If Assumption 4.3.1 is satisfied, and if the matrix A ∈ RY×d2 with

2We will use Õ to hide log factor log(k/δ) or log(d2/δ).

109

Ay,: := E[X2|Y = y] is of rank k = |Y|. Then eapx(ψ
∗) = eapx(ϕ1).

We additionally need an assumption on the residual a(x1) := E[Y |X1 = x1]− EL[Y |ϕ1(x1)].

Assumption 4.3.9. (Bounded approx. error; Condition 3 in Hsu et al. [2012])) We have almost surely

∥Σ−1/2
ϕ1ϕ1

ϕ1(X1)a(X1)⊤∥F ≤ b0
√
k

Theorem 4.3.10. (CI with approximation error) Fix a failure probability δ ∈ (0, 1), under the same

assumption as Lemma 4.3.8, Assumption 4.3.4 for ψ∗ and Assumption 4.3.9, if n2 ≫ ρ4(k + log(1/δ)), then

the excess risk of the learned predictor x1 → Ŵ⊤ψ∗(x1) on the downstream task satisfies:

ERψ∗ [Ŵ] ≤ eapx(ϕ1) + Õ
(
k
n2
σ2
)
.

Thus with SSL, the requirement of labels is reduced from complexity for D1 to O(k).

4.4 Beyond conditional independence

In the previous section, we focused on the case where we have exact CI. A weaker but more realistic assumption

is that Y captures some portion of the dependence between X1 and X2 but not all. We quantify this notion of

approximate ACI through a quantity ϵ2CI (Definition 4.4.2), and show excess risk bounds for the representation

learned from SSL3. In particular, the excess risk will have the form Õ
(
d2
n2

+ ϵ2CI + ϵ2pre

)
, which suggests

that only n2 = O(d2) labeled samples will be required to get small error on downstream task, as long as

approximate CI is satisfied (ϵ2CI is small) and the pretext task is solved well enough (ϵ2pre is small). This is in

contrast to not doing SSL, where many more labeled samples will be required to learn a solve the downstream

task that learns a complicated representation function from scratch. We now describe the SSL method on

finite samples, followed by the definition of ACI which we use to discuss the main excess risk bound and its

consequences.

SSL with finite samples and general function space: Let Xpre
1 = [x

(1,pre)
1 , · · · ,x(n1,pre)

1]⊤ ∈ Rn1×d1

and X2 = [x
(1)
2 , · · · ,x(n1)

2]⊤ ∈ Rn1×d2 be n1 training samples for pretext task, where (x
(i,pre)
1 ,x

(i)
2) is sampled

from PX1X2
. The n2 labeled samples for the downstream task are defined as Xdown

1 ∈ Rn2×d1 , Y ∈ Rn2×d34.

3Results for jointly-Gaussian variables is in Section 4.12.1; ACI is quantified by the partial covariance matrix.
4d3 = k and Y ≡ ϕy(Y) (one-hot encoding) refers multi-class classification task, d3 = 1 refers to regression.

110

Given a representation function space H : X1 → Rd2 , we learn ψ̃ from H using the n1 unlabeled samples and

then use the n2 labeled samples to learn a linear classifier on the learned representation ψ̃(Xdown
1) to fit Y .

This process is summarized below.

1) ψ̃ := arg min
ψ∈H

1

n1
∥X2 − ψ(Xpre

1)∥2F , 2) Ŵ ← arg min
W

1

2n2
∥Y − ψ̃(Xdown

1)W ∥2F . (4.2)

In our main results, we consider two types of function spaces: H ∈ {H1,Hu}. Recall that H1 = {ψ(·) =

Bϕ1(·);B ∈ Rd2×D1} is a class of linear representations induced by feature map ϕ1 : X1 → RD1 . We

use Hu to denote a function space with universal approximation power (e.g. deep networks) that ensures

ψ∗ = E[X2|X1] ∈ Hu. We define the optimal predictor in each case as f∗H(X1) = EL[Y |ϕ1(X1)] when H = H1,

f∗H = f∗ for H = Hu, we define excess risk as

ERψ̃(Ŵ) := EX1

[
∥f∗H(X1)− Ŵ⊤ψ̃(X1)∥22

]
.

Approximate conditional independence: Our new assumption will generalize Assumption 4.3.1 in two

ways, 1) we allow for additional latent variables Z that together with Y could potentially make X1 and X2

independent, and 2) we allow this conditional independence to be approximate. Note that allowing for extra

latent variable can trivially make X1 and X2 to be conditionally independent by picking a large enough Z

(e.g. Z = (X1, X2)). However the following assumption, that needs the pretext target X2 to correlate with

all instances of variable Ȳ = [Y,Z] (analogous to Lemma 4.3.2), will impose this restriction on how large Z

can be.

Assumption 4.4.1 (Correlation between X2 and Y,Z). Suppose there exists latent variable Z ∈ Z, |Z| = m

that ensures ΣϕȳX2
is full column rank and ∥ΣY ϕȳ

Σ†
X2ϕȳ

∥2 = 1/β, where A† is pseudo-inverse, and ϕȳ is

the one-hot embedding for Ȳ = [Y,Z].

Just as in Section 4.3, this assumption will not assume away the problem (Example Example 4.3.3 can be

suitably extended). The additional term 1/β here captures both the “scale” of X2 and also the strength of

correlation between X2 and [Y,Z] that was discussed after Lemma 4.3.2. For ΣϕȳX2
to be full column rank,

it is essential that d2 ≥ km, and this already gives an upper bound on the size of Z. Given this restriction on

Z (and thus Ȳ), we define the notion of approximate conditional independence.

111

Definition 4.4.2 (Approximate conditional independence with function space H). For Ȳ = [Y,Z],

1. For H = H1, define ϵCI := ∥Σ−1/2
ϕ1ϕ1

Σϕ1X2|ϕȳ
∥F .

2. For H = Hu, define ϵ2CI := EX1
[∥E[X2|X1]− EȲ [E[X2|Ȳ]|X1]∥2].

Firstly we note that this is indeed an extension of exact CI, since exact CI in both cases will imply that

ϵCI = 0. We present a unified analysis in the appendix that shows the ϵCI for the second case is same as the

first case, with covariance operators instead of matrices (A direct derivation is in Claim Claim 4.12.9). We

also present more relaxed and general form of the above assumptions in Section 4.14.1. With this assumption,

we are ready to present our main bound.

Bound on excess risk: Recall that we assume that the residual term N := Y − E[Y |X1] is mean zero

and σ2-subgaussian. Before showing our main result, analogous to Assumption 4.3.9, for the class H1

with non-universal features ϕ1, we will need an assumption5 on the residual a := f∗ − f∗H1
= E[Y |X1] −

EL[Y |ϕ1(X1)]:

Assumption 4.4.3. (Bounded approximation error on pretext phase [Hsu et al., 2012]) There exists a

universal constant b0, such that ∥Σ−1/2
ϕ1ϕ1

ϕ1(X1)a(X1)⊤∥F ≤ b0
√
d2 almost surely.

Theorem 4.4.4. For a fixed δ ∈ (0, 1), under Assumptions 4.3.4 and 4.4.1 for ψ̃ and ψ∗ and Assumption 4.4.3

for non-universal feature maps, if n1, n2 ≫ ρ4(d2 + log 1/δ), and we learn the pretext tasks such that:

E∥ψ̃(X1)− ψ∗(X1)∥2F ≤ ϵ2pre. Then the generalization error for downstream task w.p. 1− δ is:

ERψ̃(Ŵ) ≤ Õ

 σ2 d2
n2︸ ︷︷ ︸

estimation error

+
ϵ2CI

β2
+
ϵ2pre
β2︸ ︷︷ ︸

approximation error

 (4.3)

We defer the proof to the appendix. The proof technique is similar to that of Section 4.3. The difference is

that now ψ̃(X(down)) ∈ Rn2×d2 will be an approximately low rank matrix, where the low rank part is the

high-signal features that implicitly comes from Y, Z that can linearly learn downstream task. The remaining

part comes from ϵCI and ϵpre and causes the approximation error. Again by selecting the top km (dimension

of ϕȳ) features we could further improve the bound:

Remark 4.4.5. By applying PCA on ψ̃(Xdown
1) and keeping the top km principal components only, we can

5This rules out the failure if one chooses a very simple function class to learn E[X2|X1]. In practice we usually use neural
networks (with universal approximation power) and this bound should be very small.

112

improve the bound in Theorem 4.4.4 to ERψ̃(Ŵ) ≤ Õ
(
σ2 km

n2
+

ϵ2CI

β2 +
ϵ2pre
β2

)
.

We take a closer look at the different sources of errors in Remark 4.4.5: 1) The first term is estimation

error on learning with finite samples n2 with noise level σ2 in Y − f∗(X1); 2) ϵCI measures the approximate

CI; and 3) ϵpre is the error from not learning the pretext task exactly. The first term is optimal ignoring

log factors as we do linear regression on mk-dimensional features. The second and third term together

form approximation error. They are non-reducible due to the fact that f∗ is not exactly linear in ψ

and we use it as a fixed representation. Fine-tuning the representations might be necessary to get rid

of these terms when we have sufficient downstream labeled data. We leave this exploring this as future

work. Compared to traditional supervised learning, learning f∗H requires sample complexity scaling with the

(Rademacher/Gaussian) complexity of H (see e.g. Bartlett and Mendelson [2002], Shalev-Shwartz and Ben-

David [2014]), which is very large for complicated models such as deep networks. Thus SSL can significantly

reduce the labeled sample complexity down from this complexity measure of H to Õ(km), demonstrating

the power of predicting what you already know using unlabeled data. In Section 4.15, we consider a similar

result for classification.

4.5 Example: topic modeling

In this section, we will demonstrate how our framework can be instantiated for mixed-membership models

including topic models, not just clustering. Topic modeling for text has a rich literature [Papadimitriou et al.,

2000, Hofmann, 1999, Blei et al., 2003, Arora et al., 2012, 2013] and is used for analyzing and designing

algorithms for information retrieval, dimensionality reduction and data analysis for large text corpora. We

describe the basic setup below, followed by how our results for reconstruction-based SSL can be instantiated

to learn such models.

For a set S, let ∆S denote the set of all distributions on S. In the topic modeling framework, generation of a

text document with a vocabulary set [V] = {1, . . . , V } is governed by certain latent topics from the set [k],

where k is the total number of topics. Each topic i ∈ [k] is associated with a distribution over the vocabulary

[V] that is denoted by vector Ai ∈ ∆[V]; stack these vectors into the columns of a matrix A ∈ RV×k. A

document X = (x1, . . . , xn) ∈ [V]N of length N is then sampled from a mixture of the k topics µ ∈ ∆[k]. The

generative process is described below:

1. Sample a topic mixture µ ∼ τ , where τ is some underlying distribution over ∆k, i.e. τ ∈ ∆∆[k]

113

2. For each i ∈ [N], sample a topic ti ∼ µ and sample a word xi ∼ Ati from the topic

For the reconstruction SSL task, we evenly split the document as X = (X̄1, X̄2), where X̄1 and X̄2 denote

the first and second halves of the document; note that X̄1, X̄2 ∈ [V]N/2. We let X1 and X2 be the multiset of

words in the two halves by using the normalized bag-of-words representation, i.e. Xi = 2
N bag-of-words(X̄i) ∈

RV , i ∈ {1, 2}6. The SSL task is to learn a representation ψ ∈ {ψ(·) = Bϕ1(·);B ∈ RV×V } that minimizes

∥ψ(X1)−X2∥2.

The downstream task is chosen to be a linear function of the topic posterior distribution µ for a given

document X, i.e. Y = w⊤E[µ|X] + N , where N is 0 mean and σ2-subgaussian. The error of a predictor

f : [V]N → R is measured as EX,Y
[
(f(X)− Y)

2
]
, the optimal predictor being f∗(X) = E [Y | X].

A crucial property of topic model described above is that words in the document are sampled independently

given the topic mixture µ, thus giving us the property: X1 ⊥ X2 | µ. Although the cardinality of µ ∈ ∆[k]

(that implicitly shows up in Theorem 4.4.4) is infinite, we can still show the benefit of SSL using our theoretical

framework. We will show appropriate bounds for ϵCI and β, that show up in Theorem 4.4.4, using the topic

model generative process.

Corollary 4.5.1. Given a topic model characterized by (A, τ), suppose Γ = Eµ∼τ
[
µµ⊤] is the topic covariance

matrix and let κ = λmax(Γ)
λmin(Γ)

<∞ be its condition number. Let ϵCI be the definition (2) from Definition 4.4.2

and β as defined in Assumption 4.4.1, then there exists a latent variable Ȳ ∈ Ȳ such that the following hold

1. Ȳ takes k distinct values, i.e. |Ȳ| = k

2. X1 and X1 are uncorrelated given Ȳ , which implies ϵCI = 0.

3. E[Y |X1] is a linear function of E[Ȳ |X1]

4. β−1 ≤ κ∥w∥2/λmin(A)

The proof is presented in Section 4.12.6. Thus the upper bound from Theorem 4.4.4 will look like

Õ
(
σ2 k

n2
+ ϵ2pre

κ∥w∥2

λmin(A)

)
, thus requiring only O(k) samples for the downstream task.

6We only need X2 to be the bag-of-word representation, X1 can be an ordered sentence.

114

4.6 Conditional distribution decomposition: SimSiam, CCA, ACE

In this section we establish the connection between SimSiam Chen and He [2021] and non-linear CCA between

X1 and X2 and the alternating conditional expectation (ACE) algorithm. We show how our previous analysis

can be extended to this setting and how the problem relates to decomposing the conditional distribution

of X2 | X1.

4.6.1 Theoretical guarantees for non-linear CCA

In the previous sections, we used ψ to predict X2 given X1. As discussed in Remark Remark 4.11.1, we

could have predicted η(X2) from X1 for any function η, with all bounds depending on the function η. An

alternative is to avoid choosing a specific η, but instead simultaneously learn an η that can be easily predicted

from X1. We further show how our problem setup and analysis can capture the popular method of SimSiam,

an SSL method that does not use negative samples.

We first formulate the aforementioned problem and show that it corresponds to performing non-linear canonical

component analysis (CCA) [Hardoon et al., 2004] on the joint distribution of (X1, X2). We let L2(X) denotes

the Hilbert space of square integrable function with respect to the measure PX , the marginal distribution of

X. For instance, in our context of SSL, for a function g : Rd2 → R, we denote ∥g∥2L2(X2)
=
∫
g2(x2)dPX2

(x2)

and thus L2(X2) = {g : Rd2 → R | ∥g∥2L2(X2)
<∞.}.

For zero-mean representation functions ψ : ψi ∈ L2(X1), η : ηi ∈ L2(X2), i ∈ [k], we consider the generalized

alternating conditional expectation (ACE) algorithm (Makur et al. [2015], Breiman and Friedman [1985],

Buja [1990]) that optimizes the following:

min
ψ,η

LACE(ψ, η) := EX1,X2

[
∥ψ(X1)− η(X2)∥2

]
, s.t. Σψ,ψ = Ση,η = Ik (4.4)

Here Σψ,ψ ∈ Rk×k and (Σψ,ψ)i,j = EX1
[ψi(X1)ψj(X1)] and similarly for η : X2 → Rk. As we will show in

Proposition 4.6.7, the above objective is equivalent to the following non-linear CCA:

max
ψ,η

LCCA(ψ, η) := EX1,X2

[
ψ(X1)⊤η(X2)

]
, s.t. Σψ,ψ = Ση,η = Ik.

Connection to SimSiam: In the setting for the SimSiam Chen and He [2021] method, X1 and X2 are

two randomly augmented images. The non-linear CCA problem is almost identical to SimSiam, except that

115

we use normalization of representation instead of stop-gradient to prevent representation collapse. CCA

maximizes the inner product of the representations for each positive pairs (X1, X2) generated from their joint

distribution. At the same time, the normalization constraint ensures that the representation doesn’t collapse

to trivial function, so we do not need negative samples. We now demonstrate how our previous analysis can

easily apply to non-linear CCA.

Theorem 4.6.1 (General theorem for non-linear CCA). Let ψ : X1 → Rk, η : X2 → Rk be the solution of Eqn.

Equation (4.4). Denote scalars σi := EX1X2
[ψi(X1)ηi(X2)]. Then the approximation error of ψ satisfies:

eapx(ψ) := min
W∈Rk×k

E[∥f∗(X1)−W⊤ψ(X1)∥2]

≤
k∑
y=1

min
gy∈L2(X2)

2(∥(Tk − L) ◦ gy∥2L2(X1)
+ ∥L ◦ gy − f∗y ∥2L2(X1)

).

Here f∗ is the optimal function to predict the one-hot encoder of Y with X2, i.e., f∗y (x1) = E[1(Y =

y)|X1 = x1] = P (Y = y|X1 = x1). Here (Tk ◦ gy)(x1) :=
∑k
i=1 σiE[ηi(X2)gy(X2)]ψi(x1), and (L ◦ gy)(x1) :=

EY [EX2 [gy(X2)|Y]|X1 = x1].

The proof of this theorem and its corollaries below can be found in Section 4.13. With this theorem, we can

apply different choices of gy to derive the generalization bound. If we choose gy such that E[gy(X2)|Y = y] =

1(Y = y), we get the following generalization bound:

Corollary 4.6.2 (Generalization bound with non-linear CCA.). In the same setting of Theorem 4.6.1, and

suppose the learned ψ satisfies Assumption 4.3.4, then we have:

ERψ(Ŵ) ≤ Õ
(
kϵ̃2CI

λ̃2
+ σ2 k

n2

)
.

Here ϵ̃2CI := max∥g∥L2(X2)=1 EX1
(E[g(X2)|X1]−E[E[g(X2)|Y]|X1])2 is the measure of approximate conditional

independence, and λ̃ is the (k − 1)-th maximal correlation between X2 and Y 7.

Assumption 4.6.3 (α-Bayes error). We assume Y is almost deterministic when predicting from either X1

or X2. Specifically, there exists a classifier g∗1 such that PX1,Y (g∗1(x) ̸= y) ≤ α; there exists g∗2 such that

PX2,Y (g∗2(x) ̸= y) ≤ α.
7The definition and more discussion of maximal correlation between two random variable are deferred in Definition 4.6.8 and

the next subsection.

116

If we choose gy(x2) = 1(g∗2(x2) = y),∀y ∈ [k] where g∗2 := E[Y |X2] in Theorem 4.6.1, we get the following

corollary:

Corollary 4.6.4 (Guarantees with small Bayes error). Under the same setting and algorithm as Corol-

lary 4.6.2, if additionally we assume α-Bayes error (Assumption 4.6.3), we have that the generalization error

also satisfies:

ERψ(Ŵ) ≤ Õ
(

α

1− λ
+ σ2 k

n2

)
,

where λ is the k-th maximal correlation between X1 and X2.

When the joint distribution of X1, X2 is non-degenerate, λ < 1. Therefore when Bayes error is small, the

learned representation will yield a good downstream performance.

This corollary and the clustering setting is inspired by Theorem 3.7 in HaoChen et al. [2021], which showed a

similar result for a spectral contrastive loss. Our corollary here shows that non-linear CCA achieves similar

guarantees as spectral contrastive loss, without needing any negative samples.

Remark 4.6.5. All the results in this section holds in the same way when replacing Y with the more

fine-grained labels Ỹ = [Y, Z] as discussed in the previous section, and by replacing k by the cardinality of Ỹ .

4.6.2 Connection to ACE algorithm and maximal correlation

In this section, we review the variational formulation of our problem, and a closer look at the Breiman and

Friedman’s alternating conditional expectation (ACE) algorithm Makur et al. [2015], Breiman and Friedman

[1985], Buja [1990]. Recall L2(X1) and L2(X2) are the square integrable function with respect to the marginal

distribution of X1 and X2. We will understand the maximal correlation and the ACE algorithm on the

operator T : L2(X2)→ L2(X1), where (T ◦ g)(x1) := E[g(X2)|X1 = x1] for any g ∈ L2(X2). We will show

that ACE algorithm decomposes the operator T and also implicitly defines the maximal correlation between

the two random variables X1 and X2.

Due to Courant–Fischer–Weyl min-max principle, the top singular value of T can be computed by the

variational problem

max
∥u∥L2(X1)=1,∥v∥L2(X2)=1

{
⟨u, T v⟩ ≡

∫
p(x1, x2)u(x1)v(x2)dx1dx2

}
.

117

The top k singular vectors of T can be computed by the variational problem

{ψi}ki=1, {ηi}ki=1 ← arg max
ψ,η

{
k∑
i=1

∫
⟨ψi, T ηi⟩ ≡ EX1,X2

[
ψ(X1)⊤η(X2)

]}
,

s.t. Σψ,ψ = Ση,η = Ik. (4.5)

Lemma 4.6.6. ACE algorithm (Eqn. Equation (4.5)) with k-dimensional vector-valued functions solves the

(k + 1)-SVD of T , and the top singular vectors of T is always achieved by constant functions u(x1) ≡ 1 and

v(x2) ≡ 1.

Proof. Observe that the top singular value σ1(T) is achieved by the top singular functions u1(x1) = 1 ∈ L2(X1)

and v1(x2) = 1 ∈ L2(X2). The constraint Ef(X1) = 0 corresponds to ⟨u1, f⟩X1 = 0, i.e., f being in the

complement subspace of the top left singular vector of T , and vice versa for X2. By the Courant-Fischer

characterization of singular values, ρ1 is the variational problem corresponding to σ2(T). Similarly, ψk, ηk

are the (k + 1)-th singular vectors of T since they since ρk = ⟨T ηk, ψk⟩.

The second proposition shows that the variational form can be solved by the famous ACE algorithm of

Breiman and Friedman Makur et al. [2015], Breiman and Friedman [1985], Buja [1990].

Proposition 4.6.7. The generalized ACE algorithm solves Equation (4.4), and is equivalent to the solution

of non-linear CCA as in Equation (4.5).

Proof.

E
k∑
i=1

(ηi(X2)− ψi(X1))2

=

∫
x1,x2

p(x1, x2)

k∑
i=1

(ηi(x2)− ψi(x1))2

=

k∑
i=1

∫
x1,x2

(η2i (x2) + ψ2
i (x1))p(x1, x2)dx1dx2 − 2

k∑
i=1

∫
x1,x2

p(x1, x2)ηi(x2)ψi(x1)dx1dx2

=
∑
i

(
EX1 [ψ2

i (X1)] + EX2 [η2i (X2)]− 2⟨ψi, T ηi⟩
)

118

=2k − 2

k∑
i=1

⟨ψi, T ηi⟩. (Due to the orthogonality constraints)

Therefore the solution of ACE is equivalent to that of non-linear CCA.

In summary, these two propositions show that calculating the SVD of T corresponds to conducting the

alternating conditional expectation algorithm Makur et al. [2015], Breiman and Friedman [1985], Buja

[1990].

Finally, the generalized maximal correlation between X1 and X2 is associated with the singular values of

T .

Definition 4.6.8 (k-th maximal correlation). For every k ≥ 1, we define the k-th maximal correlation

between X1 and X2 as:

λk = max
fi,gi,i∈[k]

min
1≤i≤k

E[fi(X1)gi(X2)],

s.t. Σf,f = I,Σg,g = I,E[fi(X1)] = 0,E[gi(X2)] = 0.

As shown in Propostion 3 and Theorem 2 of Makur et al. [2015], the k-th maximal correlation is the (k+ 1)-th

singular value of T and therefore can be calculated from the ACE algorithm: λk = E[ψk(X1)ηk(X2)] when

ψ, η solves Eq. Equation (4.4). One can also refer to Makur et al. [2015] for more geometric interpretation

for the maximal correlation between two random variables.

4.7 Experiments

In this section, we empirically verify our claim that SSL performs well when ACI is satisfied. More details for

experiments can be found in Section 4.17, including experiments in the text domain.

Simulations. With synthetic data, we verify how excess risk (ER) scales with the cardinality/feature

dimension of Y (k), and ACI (ϵCI in Definition 4.4.2). We consider a mixture of Gaussian data and conduct

experiments with both linear function space (H1 with ϕ1 as identity map) and universal function space

119

(a) (b) (c) (d)

Figure 4.1: Left two: how MSE scales with k (the dimension of Y) and ϵCI (Definition 4.4.2) with the linear
function class. Right two: how MSE scales with k and ϵ with ψ∗ and non-linear function class. Mean of 30
trials are shown in solid line and one standard error is shown by shadow.

Hu. We sample the label Y uniformly from {1, ..., k}. For i-th class, the centers µ1i ∈ Rd1 and µ2i ∈ Rd2

are uniformly sampled from [0, 10). Given Y = i, α ∈ [0, 1], let X1 ∼ N (µ1i, I), X̂2 ∼ N (µ2i, I), and

X2 = (1− α)X̂2 + αX1. Therefore α is a correlation coefficient: α = 0 ensures X2 being CI with X1 given Y

and when α = 1, X2 fully depends on X1. (if d1 ̸= d2, we append zeros or truncate to fit accordingly).

We first conduct experiments with linear function class. We learn a linear representation ψ with n1 samples

and the linear prediction of Y from ψ with n2 samples. We set d1 = 50, d2 = 40, n1 = 4000, n2 = 1000 and

ER is measured with Mean Squared Error (MSE). As shown in Figure Figure 4.1(a)(b), the MSE of learning

with ψ(X1) scales linearly with k as indicated in Theorem 4.3.10, and scales linearly with ϵCI associated

with linear function class as indicated in Theorem 4.4.4. Next we move on to general function class, i.e.,

ψ∗ = E[Y |X1] with a closed form solution (see example Example 4.3.3). We use the same parameter settings

as above. For baseline method, we use kernel linear regression to predict Y using X1 (we use RBF kernel

which also has universal approximation power). As shown in Figure Figure 4.1(c)(d), the phenomenon is the

same as what we observe in the linear function class setting, and hence they respectively verify Theorem 4.3.5

and Theorem 4.4.4 with Hu.

Computer Vision Task. We verify if learning from ψ is more effective than learning directly from X1, in

a realistic setting (without enforcing conditional independence). Specifically, we test on the Yearbook dataset

[Ginosar et al., 2015], and try to predict the date when the portraits are taken (denoted as YD), which ranges

from 1905 to 2013. We resize all the portraits to be 128 by 128. We crop out the center 64 by 64 pixels

(the face), and treat it as X2, and treat the outer rim as X1 as shown in Figure Figure 4.2. Our task is to

predict YD, which is the year when the portraits are taken, and the year ranges from 1905 to 2013. For ψ, we

learn X2 from X1 with standard image inpainting techniques [Pathak et al., 2016], and full set of training

120

Figure 4.2: Left: Example of the X2 (in the red box of the 1st row), the X1 (out of the red box of the 1st
row), the input to the inpainting task (the second row), ψ(X1) (the 3 row in the red box), and in this example
Y = 1967. Middle: Mean Squared Error comparison of yearbook regression predicting dates. Right: Mean
Absolute Error comparison of yearbook regression predicting dates. Experiments are repeated 10 times, with
mean shown in solid line and one standard deviation in shadow.

data (without labels). After that we fix the learned ψ and learn a linear model to predict YD from ψ using a

smaller set of data (with labels). Besides linear model on X1, another strong baseline that we compare with

is using ResNet18 [He et al., 2016] to predict YD from X1. With the full set of training data, this model is

able to achieve a Mean Absolute Difference of 6.89, close to what state-of-the-art can achieve [Ginosar et al.,

2015]. ResNet18 has similar amount of parameters as our generator, and hence roughly in the same function

class. We show the MSE result as in Figure Figure 4.2. Learning from ψ is more effective than learning from

X1 or X2 directly, with linear model as well as with ResNet18. Practitioner usually fine-tune ψ with the

downstream task, which leads to more competitive performance [Pathak et al., 2016].

4.8 Conclusion

In this work we theoretically quantify how an approximate conditional independence assumption that connects

pretext and downstream task data distributions can give sample complexity benefits of self-supervised learning

on downstream tasks. Our theoretical findings are also supported by experiments on simulated data and also

on real CV and NLP tasks. We would like to note that approximate CI is only a sufficient condition for a

useful pretext task. We leave it for future work to investigate other mechanisms by which pretext tasks help

with downstream tasks.

121

4.9 Some useful facts

4.9.1 Relation of inverse covariance matrix and partial correlation

For a covariance matrix of joint distribution for variables X,Y , the covariance matrix is

ΣXX ΣXY

ΣY X ΣY Y

 =


ΣX1X1 ΣX1X2 ΣX1Y

ΣX2X1
ΣX2X2

ΣX2Y

ΣY X1
ΣX2Y ΣY Y

 .

Its inverse matrix Σ−1 satisfies

Σ−1 =

A ρ

ρ⊤ B

 .
Here A−1 = ΣXX −ΣXYΣ

−1
Y YΣY X ≡ cov(X − EL[X|Y], X − EL[X|Y]) := ΣXX·Y , the partial covariance

matrix of X given Y .

4.9.2 Relation to conditional independence

Proof of Lemma 4.12.6.

Fact 4.9.1. When X1⊥X2|Y , the partial covariance between X1, X2 given Y is 0:

ΣX1X2·Y :=cov(X1 − EL[X1|Y], X2 − EL[X2|Y])

≡ΣX1X2
−ΣX1YΣ

−1
Y YΣY X2

= 0.

The derivation comes from the following:

Lemma 4.9.2 (Conditional independence (Adapted from Huang [2010])). For random variables X1, X2 and

a random variable Y with finite values, conditional independence X1⊥X2|Y is equivalent to:

sup
f∈N1,g∈N2

E[f(X1)g(X2)|Y] = 0. (4.6)

Here Ni = {f : Rdi → R : E[f(Xi)|Y] = 0}, i = 1, 2.

122

Notice for arbitrary function f , E[f(X)|Y] = EL[f(X)|ϕy(Y)] with one-hot encoding of discrete variable Y .

Therefore for any feature map we can also get that conditional independence ensures:

Σϕ1(X1)ϕ2(X2)|Y :=cov(ϕ1(X1)− EL[ϕ1(X1)|ϕy(Y)], ϕ2(X2)− EL[ϕ2(X2)|ϕy(Y)])

=E[ϕ̄1(X1)ϕ̄2(X2)⊤] = 0.

Here ϕ̄1(X1) = ϕ1(X1)−E[ϕ1(X1)|ϕy(Y)] is mean zero given Y , and vice versa for ϕ̄2(X2). This thus finishes

the proof for Lemma 4.12.6.

4.9.3 Technical facts for matrix concentration

We include this covariance concentration result that is adapted from Claim A.2 in Du et al. [2020]:

Claim 4.9.3 (covariance concentration for gaussian variables). Let X = [x1,x2, · · ·xn]⊤ ∈ Rn×d where each

xi ∼ N (0,ΣX). Suppose n≫ k + log(1/δ) for δ ∈ (0, 1). Then for any given matrix B ∈ Rd×m that is of

rank k and is independent of X, with probability at least 1− δ
10 over X we have

0.9B⊤ΣXB ⪯ 1

n
B⊤X⊤XB ⪯ 1.1B⊤ΣXB. (4.7)

And we will also use Claim A.2 from Du et al. [2020] for concentrating subgaussian random variable.

Claim 4.9.4 (covariance concentration for subgaussian variables). Let X = [x1,x2, · · ·xn]⊤ ∈ Rn×d where

each xi is ρ
2-sub-gaussian. Suppose n≫ ρ4(k+log(1/δ)) for δ ∈ (0, 1). Then for any given matrix B ∈ Rd×m

that is of rank k and is independent of X, with probability at least 1− δ
10 over X we have

0.9B⊤ΣXB ⪯ 1

n
B⊤X⊤XB ⪯ 1.1B⊤ΣXB. (4.8)

Claim 4.9.5. Let Z ∈ Rn×k be a matrix with row vectors sampled from i.i.d Gaussian distribution N (0,ΣZ).

Let P ∈ Rn×n be a fixed projection onto a space of dimension d. Then with a fixed δ ∈ (0, 1), we have:

∥PZ∥2F ≲ Tr(ΣZ)(d+ log(k/δ)),

with probability at least 1− δ.

123

Claim Claim 4.9.5. Each t-th column of Z is an n-dim vector that is i.i.d sampled from Gaussian distribution

N (0,Σtt).

∥PZ∥2F =

k∑
t=1

∥Pzt∥2

=

k∑
t=1

z⊤
t Pzt.

Each term satisfy Σ−1
kk ∥Pzt∥2 ∼ χ2(d), and therefore with probability at least 1− δ′ over zt,

Σ−1
kk ∥Pzt∥2 ≲ d+ log(1/δ′).

Using union bound, take δ′ = δ/k and summing over t ∈ [k] we get:

∥PZ∥2F ≲ Tr(ΣZ)(d+ log(k/δ)).

Theorem 4.9.6 (Vector Bernstein Inequality (Theorem 12 in Gross [2011])). Let X1, · · · , Xm be independent

zero-mean vector-valued random variables. Let

N = ∥
m∑
i=1

Xi∥2.

Then

P[N ≥
√
V + t] ≤ exp

(
−t2

4V

)
,

where V =
∑
i E∥Xi∥22 and t ≤ V/(max ∥Xi∥2).

Lemma 4.9.7. Let Z ∈ Rn×d be a matrix whose row vectors are n independent mean-zero (conditional on P

being a rank-d projection matrix) σ-sub-Gaussian random vectors. With probability 1− δ:

∥PZ∥2F ≲ σ2(d+ log(d/δ)).

Proof of Lemma 4.9.7. Write P = UU⊤ = [u1, · · · ,ud] where U is orthogonal matrix in Rn×d where

124

U⊤U = I. Notice ∥UU⊤Z∥2F = Tr(Z⊤UU⊤UU⊤Z) = Tr(Z⊤UU⊤Z). Therefore:

∥PZ∥2F =∥U⊤Z∥2F

=

d∑
j=1

∥u⊤
j Z∥2

=

d∑
j=1

∥
n∑
i=1

ujizi∥2,

where each zi ∈ Rk being the i-th row of Z is a centered independent σ sub-Gaussian random vectors. To

use vector Bernstein inequality, we let X :=
∑n
i=1Xi with Xi taking the value of ujizi. We have Xi is zero

mean: E[Xi] = E[ujiE[zi|uji]] = E[uji · 0] = 0.

V :=
∑
i

E∥Xi∥22

=
∑
i

E[u2
jiz

⊤
i zi]

=
∑
i

Euji
[u2
jiE[∥zi∥22|uji]]

≤σ2
∑
i

Euji [u
2
ji]

=σ2.

Therefore by vector Bernstein Inequality, with probability at least 1− δ/d, ∥X∥ ≤ σ(1 +
√

log(d/δ)). Then

by taking union bound, we get that ∥PZ∥2 =
∑d
j=1 ∥u⊤

j Z∥2 ≲ σ2d(1 + log(d/δ)) with probability 1− δ.

4.10 Warm-up: jointly Gaussian variables

We assume X1, X2, Y are jointly Gaussian, and so the optimal regression functions are all linear, i.e.,

E[Y |X1] = EL[Y |X1]. We also assume data is centered: E[Xi] = 0 and E[Y] = 0. Non-centered data can

easily be handled by learning an intercept. All relationships between random variables can then be captured

by the (partial) covariance matrix. Therefore it is easy to quantify the CI property and establish the necessary

and sufficient conditions that make X2 a reasonable pretext task.

125

Assumption 4.10.1 (Jointly Gaussian). X1, X2, Y are jointly Gaussian.

Assumption 4.10.2 (Conditional independence). X1⊥X2|Y .

Claim 4.10.3 (Closed-form solution). Under Assumption 4.10.1, the representation function and optimal

prediction that minimize the population risk can be expressed as follows:

ψ∗(x1) := EL[X2|X1 = x1] = ΣX2X1
Σ−1
X1X1

x1 (4.9)

Our target f∗(x1) := EL[Y |X1 = x1] = ΣY X1
Σ−1
X1X1

x1. (4.10)

Our prediction for downstream task with representation ψ∗ will be: g(·) := EL[Y |ψ∗(X1)]. Recall from

Equation (4.1) that the partial covariance matrix between X1 and X2 given Y is ΣX1X2|Y ≡ ΣX1X2
−

ΣX1YΣ
−1
Y YΣY X2 . This partial covariance matrix captures the correlation between X1 and X2 given Y . For

jointly Gaussian random variables, CI is equivalent to ΣX1X2|Y = 0. We first analyze the approximation

error based on the property of this partial covariance matrix.

Lemma 4.10.4 (Approximation error). Under Assumption 4.10.1, Assumption 4.10.2, if ΣX2Y has rank k,

we have f∗(x1) ≡W ∗ψ∗(x1), i.e., eapx(ψ
∗) = 0.

Remark 4.10.5. ΣX2Y being full column rank implies that E[X2|Y] has rank k, i.e., X2 depends on all

directions of Y and thus captures all directions of information of Y . This is a necessary assumption for X2

to be a reasonable pretext task for predicting Y . eapx(ψ∗) = 0 means f∗ is linear in ψ∗. Therefore ψ∗ selects

d2 out of d1 features that are sufficient to predict Y .

Next we consider the estimation error that characterizes the number of samples needed to learn a prediction

function f(x1) = Ŵψ∗(x1) that generalizes.

Theorem 4.10.6 (Excess risk). Fix a failure probability δ ∈ (0, 1). Under Assumption 4.10.1,Assump-

tion 4.10.2, if n2 ≫ k + log(1/δ), excess risk of the learned predictor x1 → Ŵψ∗(x1) on the target task

satisfies

ERψ∗(Ŵ) ≤ O
(

Tr(ΣY Y |X1
)(k + log(k/δ))

n2

)
,

with probability at least 1− δ.

Here ΣY Y |X1
≡ ΣY Y −ΣY X1

Σ−1
X1X1

ΣX1Y captures the noise level and is the covariance matrix of the residual

126

term Y −f∗(X1) = Y −ΣY X1Σ
−1
X1X1

X1. Compared to directly using X1 to predict Y , self-supervised learning

reduces the sample complexity from Õ(d1) to Õ(k). We generalize these results even when only a weaker

form of CI holds.

Assumption 4.10.7 (Conditional independence given latent variables). There exists some latent variable

Z ∈ Rm such that X1⊥X2|Ȳ , and ΣX2Ȳ is of rank k +m, where Ȳ = [Y, Z].

This assumption lets introduce some reasonable latent variables that capture the information between X1

and X2 apart from Y . ΣX2Ȳ being full rank says that all directions of Ȳ are needed to predict X2, and

therefore Z is not redundant. For instance, when Z = X1, the assumption is trivially true but Z is not the

minimal latent information we want to add. Note it implicitly requires d2 ≥ k +m.

Corollary 4.10.8. Under Assumption 4.10.1, Assumption 4.10.7, we have f∗(x1) ≡W ∗ψ∗(x1), i.e., the

approximation error eapx(ψ
∗) is 0. We can also generalize Theorem 4.10.6 by replacing k by k +m.

4.11 Omitted proofs with conditional independence

Proof of Lemma 4.10.4.

cov(X1|Y,X2|Y) = ΣX1X2
−ΣX1YΣ

−1
Y YΣY X2

= 0.

By plugging it into the expression of EL[X2|X1], we get that

ψ(x1) := EL[X2|X1 = x1] = ΣX2X1Σ
−1
X1X1

x1

= ΣX2YΣ
−1
Y YΣY X1

Σ−1
X1X1

x1

=ΣX2YΣ
−1
Y Y E

L[Y |X1].

Therefore, as long as ΣX2Y is rank k, it has left inverse matrix and we get: EL[Y |X1 = x1] = Σ†
X2Y

ΣY Y ψ(x1).

Therefore there’s no approximation error in using ψ to predict Y .

Proof of Corollary 4.10.8. Let selector operator Sy be the mapping such that SyȲ = Y , we overload it as

the matrix that ensure SyΣȲ X = ΣY X for any random variable X as well.

127

From Lemma 4.10.4 we get that there exists W such that EL[Ȳ |X1] = WEL[X2|X1], just plugging in Sy we

get that EL[Y |X1] = (SyW)EL[X2|X1].

Proof of Theorem 4.10.6. Write f∗(X1) = E[Y |X1] = (A∗)⊤X1. EL[Y |X1 = x1] = Σ†
X2Y

ΣY Y ψ(x1). Let

W ∗ = ΣY YΣ
†
Y X2

. From Lemma 4.10.4 we know f∗ = W ∗ψ. Recall noise N = Y − f∗(X1) is mean zero

conditional on X1. We write N = Y − f∗(X1).

First we have the basic inequality,

1

2n2
∥Y − ψ(X1)Ŵ ∥2F ≤

1

2n2
∥Y −X1A

∗∥2F

=
1

2n2
∥Y − ψ(X1)W ∗∥2F =

1

2n2
∥N∥2F .

Therefore by rearranging both sides, we have:

∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥2 ≤2⟨N , ψ(X1)W ∗ − ψ(X1)Ŵ ⟩

=2⟨Pψ(X1)N , ψ(X1)W ∗ − ψ(X1)Ŵ ⟩

≤2∥Pψ(X1)N∥F ∥ψ(X1)W ∗ − ψ(X1)Ŵ∥F

⇒ ∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥ ≤2∥Pψ(X1)N∥F

≲
√

Tr(ΣY Y |X1
)(k + log k/δ). (from Claim Claim 4.9.5)

The last inequality is derived from Claim Claim 4.9.5 and the fact that each row of N follows gaussian

distribution N (0,ΣY Y |X1
). Therefore

1

n2
∥ψ(X1)W ∗ − ψ(X1)Ŵ∥2F ≲

Tr(ΣY Y |X1
)(k + log k/δ)

n2
.

Next we need to concentrate 1/nX⊤
1 X1 to ΣX . Suppose EL[X2|X1] = B⊤X1, i.e., ψ(x1) = B⊤x1, and

ψ(X1) = X1B. With Claim Claim 4.9.3 we have 1/nψ(X1)⊤ψ(X1) = 1/nB⊤X⊤
1 X1B satisfies:

0.9B⊤ΣXB ⪯ 1/n2ψ(X1)⊤ψ(X1) ⪯ 1.1B⊤ΣXB

128

Therefore we also have:

E[∥(W ∗ − Ŵ)⊤ψ(x1)∥2]

=∥Σ1/2
X B(W ∗ − Ŵ)∥2F

≤ 1

0.9n2
∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥2F ≲

Tr(ΣY Y |X1
)(k + log k/δ)

n2
.

4.11.1 Omitted proof for general random variables

Proof of Lemma 4.3.2. Let the representation function ψ be defined as:

ψ(·) := E[X2|X1] =E[E[X2|X1, Y]|X1]

=E[E[X2|Y]|X1] (uses CI)

=
∑
y

P (Y = y|X1)E[X2|Y = y]

=:f(X1)⊤A,

where f : Rd1 → ∆Y satisfies f(x1)y = P (Y = y|X1 = x1), and A ∈ RY×d2 satisfies Ay,: = E[X2|Y = y].

Here ∆d denotes simplex of dimension d, which represents the discrete probability density over support of

size d.

Let B = A† ∈ RY×d2 be the pseudoinverse of matrix A, and we get BA = I from our assumption that A is

of rank |Y|. Therefore f(x1) = Bψ(x1),∀x1. Next we have:

E[Y |X1 = x1] =
∑
y

P (Y = y|X1 = x1)× y

=Y f(x1)

=(Y B) · ψ(X1).

Here we denote by Y ∈ Rk×Y ,Y:,y = y that spans the whole support Y . Therefore let W ∗ = Y B will finish

the proof.

129

Proof of Theorem 4.3.5. With Lemma 4.3.2 we know eapx = 0, and therefore W ∗ψ(X1) ≡ f∗(X1). Next

from basic inequality and the same proof as in Theorem 4.10.6 we have:

∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥ ≤2∥Pψ(X1)N∥F

Notice N is a random noise matrix whose row vectors are independent samples from some centered distribution.

Note we assumed E[∥N∥2|X1] ≤ σ2. Pψ(X1) is a projection to dimension k. From Lemma 4.9.7 we have:

∥f∗(X1)− ψ(X1)Ŵ ∥ ≤σ
√
k(1 + log k/δ).

Next, with Claim Claim 4.9.4 we have when n≫ ρ4(k + log(1/δ)), since W ∗ − Ŵ ∈ Rd2×k,

0.9(W ∗ − Ŵ)⊤Σψ(W ∗ − Ŵ)

⪯ 1

n2
(W ∗ − Ŵ)⊤

∑
i

ψ(x
(i)
1)ψ(x

(i)
1)⊤(W ∗ − Ŵ) ⪯ 1.1(W ∗ − Ŵ)⊤Σψ(W ∗ − Ŵ)

And therefore we could easily conclude that:

E∥Ŵ⊤ψ(X1)− f∗(X1)∥2 ≲σ2 k(1 + log(k/δ))

n2
.

4.11.2 Omitted proof of linear model with approximation error

Proof of Theorem 4.3.10. First we note that Y = f∗(X1) + N , where E[N |X1] = 0 but Y − (A∗)⊤X1 is

not necessarily mean zero, and this is where additional difficulty lies. Write approximation error term

a(X1) := f∗(X1) − (A∗)⊤X1, namely Y = a(X1) + (A∗)⊤X1 + N . Also, (A∗)⊤X1 ≡ (W ∗)⊤ψ(X1) with

conditional independence.

Second, with KKT condition on the training data, we know that E[a(X1)X⊤
1] = 0.

130

Recall Ŵ = arg minW ∥Y − ψ(X1)W ∥2F . We have the basic inequality,

1

2n2
∥Y − ψ(X1)Ŵ ∥2F ≤

1

2n2
∥Y −X1A

∗∥2F

=
1

2n2
∥Y − ψ(X1)W ∗∥2F .

i.e.,
1

2n2
∥ψ(X1)W ∗ + a(X1) + N − ψ(X1)Ŵ ∥2F ≤

1

2n2
∥a(X1) + N∥2F .

Therefore

1

2n2
∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥2

≤− 1

n2
⟨a(X1) + N , ψ(X1)W ∗ − ψ(X1)Ŵ ⟩

=− 1

n2
⟨a(X1), ψ(X1)W ∗ − ψ(X1)Ŵ ⟩ − ⟨N , ψ(X1)W ∗ − ψ(X1)Ŵ ⟩ (4.11)

With Assumption 4.3.9 and by concentration 0.9 1
n2

X1X
⊤
1 ⪯ ΣX1

⪯ 1.1 1
n2

X1X
⊤
1 , we have

1
√
n2
∥a(X1)X⊤

1 Σ
−1/2
X1
∥F ≤ 1.1b0

√
k (4.12)

Denote ψ(X1) = X1B, where B = Σ−1
X1

ΣX1X2
is rank k under exact CI since ΣX1X2

= ΣX1YΣ
−1
Y ΣY X2

.

We have

1

n2
⟨a(X1), ψ(X1)W ∗ − ψ(X1)Ŵ ⟩

=
1

n2
⟨a(X1),X1BW ∗ −X1BŴ ⟩

=
1

n2
⟨Σ−1/2

X1
X⊤

1 a(X1),Σ
1/2
X1

(BW ∗ −BŴ)⟩

≤1.1b0

√
k

n2
∥Σ1/2

X1
(BW ∗ −BŴ)∥F (from Ineq. Equation (4.12))

Back to Eqn. Equation (4.11), we get

1

2n2
∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥2F

≲

√
k

n2
∥Σ1/2

X1
(BW ∗ −BŴ)∥F +

1

n2
∥PX1

N∥F ∥X1(BW ∗ −BŴ)∥F

131

≲

(√
k

n2
+

1

n2
∥PX1N∥F

)
∥X1(BW ∗ −BŴ)∥F

=⇒ 1
√
n2
∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥F ≲

√
k(1 + log k/δ)

n2
. (from Lemma 4.9.7)

Finally, by concentration we transfer the result from empirical loss to excess risk and get:

E[∥ψ(X1)W ∗ − ψ(X1)Ŵ ∥2] ≲
k(1 + log(k/δ))

n2
.

4.11.3 Argument on denoising auto-encoder or context encoder

Remark 4.11.1. We note that since X1⊥X2|Y ensures X1⊥h(X2)|Y for any deterministic function h, we

could replace X2 by h(X2) and all results hold. Therefore in practice, we could use h(ψ(X1)) instead of ψ(X1)

for downstream task. Specifically with denoising auto-encoder or context encoder, one could think about h

as the inverse of decoder D (h = D−1) and use D−1ψ ≡ E the encoder function as the representation for

downstream tasks, which is more commonly used in practice.

This section explains what we claim in Remark Remark 4.11.1. For context encoder, the reconstruction loss

targets to find the encoder E∗ and decoder D∗ that achieve

min
E

min
D

E∥X2 −D(E(X1))∥2F , (4.13)

where X2 is the masked part we want to recover and X1 is the remainder.

If we naively apply our theorem we should use D∗(E∗(·)) as the representation, while in practice we instead

use only the encoder part E∗(·) as the learned representation. We argue that our theory also support this

practical usage if we view the problem differently. Consider the pretext task to predict (D∗)−1(X2) instead

of X2 directly, namely,

Ē ← arg min
E

E∥(D∗)−1(X2)− E(X1)∥2, (4.14)

and then we should indeed use E(X1) as the representation. On one hand, when X1⊥X2|Y , it also satisfies

X1⊥(D∗)−1(X2)|Y since (D∗)−1 is a deterministic function of X2 and all our theory applies. On the other

132

hand, the optimization on Equation (4.13) or Equation (4.14) give us similar result. Let

E∗ = arg min
E

E[∥X2 −D∗(E(X1))∥2],

and E∥X2 −D∗(E∗(X1))∥2 ≤ ϵ, then with pretext task as in Equation (4.14) we have that:

E∥(D∗)−1(X2)− E∗(X1)∥2 =E∥(D∗)−1(X2)− (D∗)−1 ◦D∗(E∗(X1))∥2

≤∥(D∗)−1∥2LipE∥X2 −D∗(E∗(X1))∥2

≤L2ϵ,

where L := ∥(D∗)−1∥Lip is the Lipschitz constant for function (D∗)−1. This is to say, in practice, we optimize

over Equation (4.13), and achieves a good representation E∗(X1) such that ϵpre ≤ L
√
ϵ and thus performs

well for downstream tasks. (Recall ϵpre is defined in Theorem 4.4.4 that measures how well we have learned

the pretext task.)

4.12 Omitted Proofs Beyond Conditional Independence

4.12.1 Warm-up: Jointly Gaussian Variables

As before, for simplicity we assume all data is centered in this case.

Assumption 4.12.1 (Approximate Conditional Independent Given Latent Variables). Assume there exists

some latent variable Z ∈ Rm such that

∥Σ−1/2
X1

ΣX1,X2|Ȳ ∥F ≤ ϵCI,

σk+m(Σ†
Y Ȳ

ΣȲ X2
) = β > 0 8 and ΣX2,Ȳ is of rank k +m, where Ȳ = [Y,Z].

When X1 is not exactly CI of X2 given Y and Z, the approximation error depends on the norm of

∥Σ−1/2
X1

ΣX1,X2|Ȳ ∥2. Let Ŵ be the solution from Equation (uses CI).

8σk(A) denotes k-th singular value of A, and A† is the pseudo-inverse of A.

133

Theorem 4.12.2. Under Assumption 4.12.1 with constant ϵCI and β, then the excess risk satisfies

ERψ∗ [Ŵ] := E[∥Ŵ⊤ψ∗(X1)− f∗(X1)∥2F] ≲
ϵ2CI

β2
+ Tr(ΣY Y |X1

)
d2 + log(d2/δ)

n2
.

Proof of Theorem 4.12.2. Let V := f∗(X1) ≡ X1Σ
−1
X1X1

Σ1Y be our target direction. Denote the optimal

representation matrix by Ψ := ψ(X1) ≡X1A (where A := Σ−1
X1X1

ΣX1X2
).

Next we will make use of the conditional covariance matrix:

ΣX1X2|Ȳ := ΣX1X2
−ΣX1ȲΣ

−1
Ȳ

ΣȲ X2
,

and plug it in into the definition of Ψ:

Ψ =X1Σ
−1
X1X1

ΣX1ȲΣ
−1
Ȳ

ΣȲ X2
+ X1Σ

−1
X1X1

ΣX1X2|Ȳ

=:L + E,

where L := X1Σ
−1
X1X1

ΣX1ȲΣ
−1
Ȳ

ΣȲ X2
and E := X1Σ

−1
X1X1

ΣX1X2|Ȳ . We analyze these two terms respectively.

For L, we note that span(V) ⊆span(L): LΣ†
X2Ȳ

ΣȲ = X1Σ
−1
X1X1

ΣX1Ȳ . By right multiplying the selector

matrix SY we have: LΣ†
X2Ȳ

ΣȲ Y = X1Σ
−1
X1X1

ΣX1Y , i.e., LW̄ = V , where W̄ := Σ†
X2Ȳ

ΣȲ Y . From our

assumption that σr(Σ
†
Ȳ Y

ΣȲ X2
) = β, we have ∥W̄ ∥2 ≤ ∥Σ†

X2Ȳ
ΣȲ ∥2 ≤ 1/β. (Or we could directly define β

as σk(Σ†
Y Ȳ

ΣȲ X2
) ≡ ∥W̄ ∥2.)

By concentration, we have E = X1Σ
−1
X1X1

ΣX1X2|Ȳ converges to Σ
−1/2
X1X1

ΣX1X2|Ȳ . Specifically, when n≫ k +

log 1/δ, ∥E∥F ≤ 1.1∥Σ−1/2
X1X1

ΣX1X2|Ȳ ∥F ≤ 1.1ϵCI (by using Claim 4.9.3). Together we have ∥EW̄ ∥F ≲ ϵCI/β.

Let Ŵ = arg minW ∥Y − ΨW ∥2. We note that Y = N + V = N + ΨW̄ − EW̄ where V is our target

direction and N is random noise (each row of N has covariance matrix ΣY Y |X1
).

From basic inequality, we have:

∥ΨŴ − Y ∥2F ≤∥ΨW̄ − Y ∥2F = ∥N −EW̄ ∥2F .

=⇒ ∥ΨŴ − V −EW̄ ∥2 ≤2⟨ΨŴ − V −EW̄ ,N −EW̄ ⟩

=⇒ ∥ΨŴ − V −EW̄ ∥ ≤∥P[Ψ,E,V]N∥+ ∥EW̄ ∥

134

=⇒ ∥ΨŴ − V ∥ ≲∥E∥F ∥W̄ ∥+ (
√
d2 +

√
log 1/δ)

√
Tr(ΣY Y |X1

). (from Claim 4.9.5)

≤
√
n2
ϵCI

β
+ (
√
d2 +

√
log 1/δ)

√
Tr(ΣY Y |X1

). (from Assumption 4.12.1)

Next, by the same procedure that concentrates 1
n2

X⊤
1 X1 to ΣX1X1 with Claim Claim 4.9.3, we could easily

get

ER[Ŵ] := E[∥Ŵ⊤ψ(X1)− f∗(X1)∥2] ≲
ϵ2CI

β2
+ Tr(ΣY Y |X1

)
d2 + log 1/δ

n2
.

4.12.2 Measuring conditional dependence with cross-covariance operator

L2(PX) denotes the Hilbert space of square integrable function with respect to the measure PX , the marginal

distribution of X. We are interested in some function class Hx ⊂ L2(PX) that is induced from some feature

maps:

Definition 4.12.3 (General and Universal feature Map). We denote feature map ϕ : X → F that maps

from a compact input space X to the feature space F . F is a Hilbert space associated with inner product:

⟨ϕ(x), ϕ(x′)⟩F . The associated function class is: Hx = {h : X → R|∃w ∈ F , h(x) = ⟨w, ϕ(x)⟩F ,∀x ∈ X}.

We call ϕ universal if the induced Hx is dense in L2(PX).

Linear model is a special case when feature map ϕ = Id is identity mapping and the inner product is over

Euclidean space. A feature map with higher order polynomials correspondingly incorporate high order

moments [Fukumizu et al., 2004, Gretton et al., 2005]. For discrete variable Y we overload ϕ as the one-hot

embedding.

Remark 4.12.4. For continuous data, any universal kernel like Gaussian kernel or RBF kernel induce the

universal feature map that we require [Micchelli et al., 2006]. Two-layer neural network with infinite width

also satisfy it, i.e., ∀x ∈ X ⊂ Rd, ϕNN (x) : Sd−1 × R→ R, ϕNN (x)[w, b] = σ(w⊤x + b) [Barron, 1993].

When there’s no ambiguity, we overload ϕ1 as the random variable ϕ1(X1) over domain F1, and H1 as the

function class over X1. Next we characterize CI using the cross-covariance operator.

Definition 4.12.5 (Cross-covariance operator). For random variables X ∈ X , Y ∈ Y with joint distribution

135

P : X × Y → R, and associated feature maps ϕx and ϕy, we denote by Cϕxϕy = E[ϕx(X) ⊗ ϕy(Y)] =∫
X×Y ϕx(x) ⊗ ϕy(y)dP (x, y), the (un-centered) cross-covariance operator. Similarly we denote by CXϕy

=

E[X ⊗ ϕy(Y)] : Fy → X .

To understand what Cϕxϕy
is, we note it is of the same shape as ϕx(x)⊗ϕy(y) for each individual x ∈ X , y ∈ Y .

It can be viewed as an operator: Cϕxϕy : Fy → Fx, Cϕxϕyf =
∫
X×Y⟨ϕy(y), f⟩ϕx(x)dP (x, y),∀f ∈ Fy. For any

f ∈ Hx and g ∈ Hy, it satisfies: ⟨f, Cϕxϕy
g⟩Hx

= EXY [f(X)g(Y)][Baker, 1973, Fukumizu et al., 2004]. CI

ensures Cϕ1X2|ϕy
= 0 for arbitrary ϕ1, ϕ2:

Lemma 4.12.6. With one-hot encoding map ϕy and arbitrary ϕ1, X1⊥X2|Y ensures:

Cϕ1X2|ϕy
:= Cϕ1X2 − Cϕ1ϕyC−1

ϕyϕy
CϕyX2 = 0. (4.15)

A more complete discussion of cross-covariance operator and CI can be found in [Fukumizu et al., 2004]. Also,

recall that an operator C : Fy → Fx is Hilbert-Schmidt (HS) [Reed, 2012] if for complete orthonormal systems

(CONSs) {ζi} of Fx and {ηi} of Fy, ∥C∥2HS :=
∑
i,j⟨ζj , Cηi⟩2Fx

<∞. The Hilbert-Schmidt norm generalizes

the Frobenius norm from matrices to operators, and we will later use ∥Cϕ1X2|ϕy
∥ to quantify approximate

CI.

We note that covariance operators [Fukumizu et al., 2009, 2004, Baker, 1973] are commonly used to capture

conditional dependence of random variables. In this work, we utilize the covariance operator to quantify the

performance of the algorithm even when the algorithm is not a kernel method.

4.12.3 Omitted Proof in General Setting

Claim 4.12.7. For feature maps ϕ1 with universal property, we have:

ψ∗(X1) :=E[X2|X1] = EL[X2|ϕ1]

=CX2ϕ1
C−1
ϕ1ϕ1

ϕ1(X1).

Our target f∗(X1) :=E[Y |X1] = EL[Y |ϕ1]

=CY ϕ1C−1
ϕ1ϕ1

ϕ1(X1).

136

For general feature maps, we instead have:

ψ∗(X1) := arg min
f∈Hd2

1

EX1X2∥X2 − f(X1)∥22

=CX2ϕ1
C−1
ϕ1ϕ1

ϕ1(X1).

Our target f∗(X1) := arg min
f∈Hk

1

EX1Y ∥Y − f(X1)∥22

=CY ϕ1C−1
ϕ1ϕ1

ϕ1(X1).

To prove Claim Claim 4.12.7, we show the following lemma:

Lemma 4.12.8. Let ϕ : X → Fx be a universal feature map, then for random variable Y ∈ Y we have:

E[Y |X] = EL[Y |ϕ(X)].

Proof of Lemma 4.12.8. Denote by E[Y |X = x] =: f(x). Since ϕ is dense in X , there exists a linear operator

a : X → R such that
∫
x∈X a(x)ϕ(x)[·]dx = f(·) a.e. Therefore the result comes directly from the universal

property of ϕ.

Proof of Claim Claim 4.12.7. We want to show that for random variables Y,X, where X is associated with

a universal feature map ϕx, we have E[Y |X] = CY ϕx(X)C−1
ϕx(X)ϕx(X)ϕx(X).

First, from Lemma 4.12.8, we have that E[Y |X] = EL[Y |ϕx(X)]. Next, write A∗ : Fx → Y as the linear

operator that satisfies

E[Y |X] = A∗ϕx(X)

s.t. A∗ = arg min
A

E[∥Y −Aϕx(X)∥2].

Therefore from the stationary condition we have A∗EX [ϕx(X)⊗ ϕx(X)] = EXY [Y ⊗ ϕx(X)]. Or namely we

get A∗ = CY ϕxC−1
ϕxϕx

simply from the definition of the cross-covariance operator C.

Claim 4.12.9. ∥C−1/2
ϕ1ϕ1
Cϕ1X2|ϕȳ

∥2HS = EX1
[∥E[X2|X1]− EȲ [E[X2|Ȳ]|X1]∥2] = ϵ2CI.

137

Proof.

∥C−1/2
ϕ1ϕ1
Cϕ1X2|ϕȳ

∥2HS

=

∫
X1

∥∥∥∥∫
X2

(
pX1X2

(x1,x2)

pX1(x1)
−
pX1⊥X2|Y (x1,x2)

pX1(x1)

)
X2dpx2

∥∥∥∥2 dpx1

=EX1 [∥E[X2|X1]− EȲ [E[X2|Ȳ]|X1]∥2].

4.12.4 Omitted Proof for Main Results

We first prove a simpler version without approximation error.

Theorem 4.12.10. For a fixed δ ∈ (0, 1), under Assumption 4.4.1, Assumption 4.3.4, if there is no

approximation error, i.e., there exists a linear operator A such that f∗(X1) ≡ Aϕ1(X1), if n1, n2 ≫ ρ4(d2 +

log 1/δ), and we learn the pretext tasks such that:

E∥ψ̃(X1)− ψ∗(X1)∥2F ≤ ϵ2pre.

Then we are able to achieve generalization for downstream task with probability 1− δ:

E[∥f∗H1
(X1)− Ŵ⊤ψ̃(X1)∥2] ≤ Õ{σ2 d2

n2
+
ϵ2CI

β2
+
ϵ2pre
β2
}. (4.16)

Proof of Theorem 4.12.10. We follow the similar procedure as Theorem 4.12.2. For the setting of no approxi-

mation error, we have f∗ = f∗H1
, and the residual term N := Y − f∗(X1) is a mean-zero random variable

with E[∥N∥2|X1] ≲ σ2 according to our data assumption in Section 4.3. N = Y − f∗(Xdown
1) is the collected

n2 samples of noise terms. We write Y ∈ Rd3 . For classification task, we have Y ∈ {ei, i ∈ [k]} ⊂ Rk (i.e,

d3 = k) is one-hot encoded random variable. For regression problem, Y might be otherwise encoded. For

instance, in the yearbook dataset, Y ranges from 1905 to 2013 and represents the years that the photos are

taken. We want to note that our result is general for both cases: the bound doesn’t depend on d3, but only

depends on the variance of N .

Let Ψ∗,L,E,V be defined as follows:

138

Let V = f∗(Xdown
1) ≡ f∗H1

(Xdown
1) ≡ ϕ(Xdown

1)C−1
ϕ1
Cϕ1Y be our target direction. Denote the optimal

representation matrix by

Ψ∗ :=ψ∗(Xdown
1)

=ϕ(Xdown
1)C−1

ϕ1ϕ1
Cϕ1X2

=ϕ(Xdown
1)C−1

ϕ1ϕ1
Cϕ1ϕȳ

C−1
ϕȳ

ΣϕȳX2
+ ϕ(Xdown

1)C−1
ϕ1ϕ1
Cϕ1X2|ϕȳ

=:L + E,

where L = ϕ(Xdown
1)C−1

ϕ1ϕ1
Cϕ1ϕȳC−1

ϕȳ
CϕȳX2 and E = ϕ(Xdown

1)C−1
ϕ1ϕ1
Cϕ1X2|Ȳ .

In this proof, we denote SY as the matrix such that SY ϕȳ = Y . Specifically, if Y is of dimension d3, SY is of

size d3 × |Y||Z|. Therefore SYΣϕyA = ΣY A for any random variable A.

Therefore, similarly we have:

LΣ†
X2ϕȳ

Σϕȳϕȳ
S⊤
Y = LΣ†

X2ϕȳ
ΣϕȳY = LW̄ = V

where W̄ := Σ†
X2ϕȳ

ΣϕȳY satisfies ∥W̄ ∥2 = 1/β. Therefore span(V) ⊆span(L) since we have assumed that

Σ†
X2ϕȳ

ΣϕȳY to be full rank.

On the other hand, E = ϕ1(Xdown
1)C−1

ϕ1ϕ1
Cϕ1X2|Ȳ concentrates to C−1/2

ϕ1ϕ1
Cϕ1X2|ϕȳ

. Specifically, when n ≫

k + log 1/δ, 1
n2
∥E∥2F ≤ 1.1∥C−1/2

ϕ1ϕ1
Cϕ1X2|ϕȳ

∥2F ≤ 1.1ϵ2CI (by using Claim 4.9.4). Together we have ∥EW̄ ∥F ≲

ϵCI/β.

We also introduce the error from not learning ψ∗ exactly: Epre = Ψ−Ψ∗ := ψ̃(Xdown
1)− ψ∗(Xdown

1). With

proper concentration and our assumption, we have that E∥ψ(X1)− ψ∗(X1)∥2 ≤ ϵpre and 1√
n2
∥ψ(Xdown

1)−

ψ∗(Xdown
1)∥2 ≤ 1.1ϵpre.

Also, the noise term after projection satisfies ∥P[Ψ,E,V]N∥ ≲
√
d2(1 + log d2/δ)σ as using Lemma 4.9.7.

Therefore Ψ = Ψ∗ −Epre = L + E −Epre.

Recall that Ŵ = arg minW ∥ψ(Xdown
1)W − Y ∥2F . And with exactly the same procedure as Theorem 4.12.2

we also get that:

139

∥ΨŴ − V ∥ ≤2∥EW̄ ∥+ 2∥EpreW̄ ∥+ ∥P[Ψ,E,V ,Epre]N∥

≲
√
n2
ϵCI + ϵpre

β
+ σ

√
d2(1 + log(d2/δ)).

With the proper concentration we also get:

E[∥Ŵ⊤ψ(X1)− f∗H1
(X1)∥2] ≲

ϵ2CI + ϵ2pre
β2

+ σ2 d2(1 + log(d2/δ))

n2
.

Next we move on to the proof of our main result Theorem 4.4.4 where approximation error occurs.

Proof of Theorem 4.4.4. The proof is a combination of Theorem 4.3.10 and Theorem 4.12.10. We follow

the same notation as in Theorem 4.12.10. Now the only difference is that an additional term a(Xdown
1) is

included in Y :

Y =N + f∗(Xdown
1)

=N + Ψ∗W̄ + a(Xdown
1)

=N + (Ψ + Epre)W̄ + a(Xdown
1)

=ΨW̄ + (N + EpreW̄ + a(Xdown
1)).

From re-arranging 1
2n2
∥Y −ΨŴ ∥2F ≤ 1

2n2
∥Y −ΨW̄ ∥2F ,

1

2n2
∥Ψ(W̄ − Ŵ) + (N + Epre + a(Xdown

1))∥2F ≤
1

2n2
∥N + EpreW̄ + a(Xdown

1)∥2F (4.17)

⇒ 1

2n2
∥Ψ(W̄ − Ŵ)∥2F ≤

1

n2
⟨Ψ(W̄ − Ŵ),N + EpreW̄ + a(Xdown

1)⟩. (4.18)

Then with similar procedure as in the proof of Theorem 4.3.10, and write Ψ as ϕ(Xdown
1)B, we have:

1

n2
⟨Ψ(W̄ − Ŵ), a(Xdown

1)⟩

=
1

n2
⟨B(W̄ − Ŵ), ϕ(Xdown

1)⊤a(Xdown
1)⟩

140

=
1

n2
⟨C1/2ϕ1

B(W̄ − Ŵ), C−1/2
ϕ1

ϕ(Xdown
1)⊤a(Xdown

1)⟩

≤
√
d2
n2
∥C1/2ϕ1

B(W̄ − Ŵ)∥F

≤1.1
1
√
n2

√
d2
n2
∥ϕ(Xdown

1)B(W̄ − Ŵ)∥F

=1.1

√
d2
n2
∥Ψ(W̄ − Ŵ)∥F .

Therefore plugging back to Equation (4.18) we get:

1

2n2
∥Ψ(W̄ − Ŵ)∥2F ≤

1

n2
⟨Ψ(W̄ − Ŵ),N + EpreW̄ + a(Xdown

1)⟩

⇒ 1

2n2
∥Ψ(W̄ − Ŵ)∥F ≤

1

2n2
∥EpreW̄ ∥F +

1

2n2
∥PΨN∥F + 1.1

√
d2
n2

.

⇒ 1

2
√
n2
∥ΨŴ − f∗H1

(Xdown
1)∥F − ∥EW̄ ∥F ≤

1
√
n2

(1.1
√
d2 + ∥EpreW̄ ∥+

√
d2 + log(d2/δ))

⇒ 1

2
√
n2
∥ΨŴ − f∗H1

(Xdown
1)∥F ≲

√
d2(1 + log d2/δ)

n2
+
ϵCI + ϵpre

β
.

Finally by concentrating 1
n2

Ψ⊤Ψ to E[ψ̃(X1)ψ̃(X1)⊤] we get:

E[∥Ŵ⊤ψ̃(X1)− f∗H1
(X1)∥22] ≲

d2(1 + log d2/δ

n2
) +

ϵ2CI + ϵ2pre
β2

,

with probability 1− δ.

4.12.5 Principal Component Regression

Claim 4.12.11 (Approximation Error of Principle Component Analysis). Let matrix A = L + E ∈ Rn×d

where L has rank r <size of A. Let Ar be the rank-r PCA of A. Then we have: ∥Ar −L∥F ≤ 2∥E∥F , and

∥Ar −L∥2 ≤ 2∥E∥2.

Proof. Due to the property of PCA, ∥Ar −A∥F ≤ ∥E∥F and ∥Ar −A∥2 ≤ ∥E∥2.

∥Ar −L∥2 =∥Ar −A + A−L∥2

≤∥Ar −A∥F + ∥E∥F

≤2∥E∥2.

141

Similarly we have ∥Ar −L∥F ≤ 2∥E∥F .

This technical fact could be used to complete the proof for Remark Remark 4.4.5.

Proof of Remark Remark 4.4.5. We replace the key steps of Theorem 4.12.10.

Recall Ψ∗,L,E,V are defined as follows:

Ψ∗ := ψ∗(Xdown
1) is the optimal representation matrix. Ψr is the features obtained from r-PCA of

Ψ∗. Ψ∗ = L + E which is low rank plus small norm. (L = ϕ(Xdown
1)C−1

ϕ1ϕ1
Cϕ1ϕȳ

C−1
ϕȳ
CϕȳX2

and E =

ϕ(Xdown
1)C−1

ϕ1ϕ1
Cϕ1X2|Ȳ . Suppose r = |Y||Z|.) Let V = f∗(Xdown

1) ≡ f∗H1
(Xdown

1) ≡ ϕ(Xdown
1)C−1

ϕ1
Cϕ1Y =

LW̄ be our target direction, where W̄ := Σ†
X2ϕȳ

ΣϕȳY .

Due to representation learning error (finite sample in the first stage) and approximate conditional independence,

the target direction V is not perfectly linear in Ψ∗ or its r-PCA features Ψ.

Now with PCR we learn the linear model with Ŵ ← arg minW ∥ΨrW − Y ∥2F . Together with Claim 4.12.11

and the same procedure as Theorem 4.12.10 we also get that:

Let Ē = L−Ψr is of rank at most 2r.

∥ΨrŴ − Y ∥2F ≤∥ΨrW̄ − Y ∥2F = ∥N − ĒW̄ ∥2F .

=⇒ ∥ΨrŴ − V − ĒW̄ ∥2 ≤2⟨ΨrŴ − V − ĒW̄ ,N − ĒW̄ ⟩

=⇒ ∥ΨrŴ − V − ĒW̄ ∥ ≤∥P[Ψr,L]N∥+ ∥ĒW̄ ∥

=⇒ ∥ΨrŴ − V ∥ ≤2∥Ē∥F ∥W̄ ∥+ ∥P2rN∥

≲∥E∥F ∥W̄ ∥+ σ
√
r(1 +

√
log(r/δ)).

With concentration on the downstream labeled samples we also get the result in Remark Remark 4.4.5:

E[∥Ŵ⊤ψr(X1)− f∗H1
(X1)∥2] ≲

ϵ2CI + ϵ2pre
β2

+ σ2 r(1 + log(r/δ))

n2
.

Here r = |Y||Z| .

142

4.12.6 Proof for topic modeling example

Proof for Corollary 4.5.1. We will construct a latent variable Ȳ such that ϵCI = 0. We pick the domain of Ȳ

to be [k] and the distribution P (Ȳ |X1) to be the distribution E [µ|X1] ∈ ∆[k], and define P
(
X2|Ȳ = i

)
=

P (X2|µ = ei). More specifically we have

P (Ȳ = i|X1) = E [µ|X1] (i) = E [µ(i)|X1] and thus E
[
Ȳ |X1

]
= E [µ|X1]

P
(
X2|Ȳ = i

)
= P (X2|µ = ei) and thus E

[
X2|Ȳ = i

]
= E [X2|µ = ei]

To show ϵCI = 0, from Definition 4.4.2 we need to show E [X2|X1] = E
[
E
[
X2|Ȳ

]
|X1

]
. Since X2 is the bag

of words representation, we know that X2 = 2
N

∑N
i=N/2+1 ewi . So for any µ ∈ ∆[k] we get

E [X2|µ] =(a) 2

N

N∑
i=N/2+1

E [ewi
|µ] =(b) 2

N

N∑
i=N/2+1

Aµ = Aµ

where (a) follows from linearity of expectation and (b) follows from the linearity of the probability distribution

of each word given µ for topic models. Thus from the definition of Ȳ , E
[
X2|Ȳ = i

]
= E [X2|µ = ei] = Aei.

To check if ϵCI = 0, we compute the following

E
[
E
[
X2|Ȳ

]
|X1

]
=

k∑
i=1

E
[
X2|Ȳ = i

]
P (Ȳ = i|X1)

=

k∑
i=1

Aei E [µ(i)|X1] = A

k∑
i=1

E [µ(i)ei|X1]

= E [Aµ|X1] = E [E [X2|µ] |X1]

Due to the topic modeling assumption and the independent sampling of words given µ, we know that

X1 ⊥ X2|µ and thus E [X2|X1] = E [E [X2|µ] |X1]. Combining with the above calculation, we get that

E
[
E
[
X2|Ȳ

]
|X1

]
= E [X2|X1], thus giving ϵCI = 0. This proves points 1. and 2.

For point 3., note that E[Y |X1] = E[w⊤µ|X1] = w⊤E[µ|X1] = w⊤E[Ȳ |X1].

Finally for point 4., we use the definition 1/β = ∥ΣY ϕȳ
Σ†
X2ϕȳ

∥2. For the first term, we note that E [ϕȲ |µ] =

E [E [ϕȲ |X1] |µ] = E [E [µ̄|X1] |µ] = µ

ΣY ϕȳ
= Eµ∼τ

[
Y ϕ⊤Ȳ

]
= Eµ∼τ

[
w⊤µϕ⊤Ȳ

]

143

= Eµ∼τ
[
w⊤µE

[
ϕ⊤Ȳ |µ

]]
= Eµ∼τ

[
w⊤µµ⊤]

= w⊤Γ

where Γ was defined as the topic covariance Γ = Eµ∼τ
[
µµ⊤]. The second term is

ΣX2ϕȳ
= Eµ∼τ

[
E [X2|µ]E

[
ϕ⊤Ȳ |µ

]]
= Eµ∼τ

[
Aµµ⊤] = AΓ

The upper bound for 1/β can be computed as follows

1/β =
∥∥∥ΣY ϕȳ

Σ†
X2ϕȳ

∥∥∥
2

=
∥∥∥w⊤Γ (AΓ)

†
∥∥∥
2

≤ ∥w∥2 λmax(Γ) λmax

(
(AΓ)

†
)

= ∥w∥2 λmax(Γ) λmin (AΓ)
−1

≤ ∥w∥2 λmax(Γ) λmin (A)
−1

λmin (Γ)
−1

= ∥w∥2
λmax(Γ)

λmin (Γ)
λmin (A)

−1
=

κ∥w∥2
λmin (A)

4.13 Omitted proofs on learning the conditional distribution

4.13.1 Introducing the operators on the Hilbert spaces

We first introduce all the operators. They will help us to present all the theorem of Section 4.6 in a more

compact way. We let L2(X) denotes the Hilbert space of square integrable function with respect to the

measure PX , the marginal distribution of X. For instance, in our context of SSL, L2(X2) = {g : Rd2 →

R|
∫
g2(x2)dPX2

(x2) <∞.}.

• Representation operator T : L2(X2)→ L2(X1),

(T g)(x1) := E[g(X2)|X1 = x1],∀g ∈ L2(X2).

• Low rank approximation operator L : L2(X2)→ L2(X1),

(Lg)(x1) = EY [EX2 [g(X2)|Y]|X1 = x1].

144

Under conditional independence X1⊥X2|Y, T = L.

– From the definition of L we can decompose it into the following two operators L = B ◦ A:

– A : L2(X2)→ L2(Y), (Ag)(y) := E[g(X2)|Y = y]

– B : L2(Y)→ L2(X1), (Bh)(x1) := E[h(Y)|X1 = x1]. Our final goal is to compute B◦I = E[Y |X1 =

x1], where I(y) = y is the identity map on L2(Y).

– A† : L2(Y)→ L2(X2) is the inverse operator ofA. Let β̃ := 1/∥A†∥HS. This β̃ ∈ [σk(A)/
√
k, σk(A)]

where σk(A) is the (k − 1)-th maximal correlation between X2 and Y .

• Operator that measures conditional independence: E := T − L,

∥E∥op := max
∥g∥L2(X2)=1

EX1(E[g(X2)|X1]− E[E[g(X2)|Y]|X1])2 =: ϵ̃CI.

Theorem 4.13.1 (Theorem 4.6.1 restated). Conduct SVD on T : find k orthonormal function u1, · · ·uk in

L2(X1) and orthonormal function v1, · · · vk ∈ L2(X2) and scalars σ1, · · ·σk ∈ R that minimizes:

L({ui}, {vi}, {σi}) := max
∥g∥L2(X2)=1

∥T g − Tkg∥L2(X1), where Tkg :=

k∑
i=1

σi⟨vi, g⟩L2(X2)ui.

Now treat ψ(x1) = [u1(x1), · · ·uk(x1)] : X1 → Rk as the representation. Then the approximation error of ψ

satisfies:

eapx(ψ) := min
W∈Rk×k

E[∥f∗(X1)−W⊤ψ(X1)∥2]

≤
k∑
y=1

min
gy∈L2(X2)

2(∥(Tk − L) ◦ gy∥2L2(X1)
+ ∥L ◦ gy − f∗y ∥2L2(X1)

).

Here f∗ is the optimal function to predict the one-hot encoder of Y with X2, i.e., f
∗
y (x1) = E[1(Y = y)|X1 =

x1] = P (Y = y|X1 = x1).

When we set gy(x2) = A† ◦ 1(Y = y), we have the following corollary:

Corollary 4.13.2 (Corollary 4.6.2 restated). In the same setting of Theorem 4.13.1, suppose the (k − 1)-th

145

maximal correlation between X2 and Y is not zero, then we have:

ERψ(Ŵ) ≤ Õ(
ϵ̃2CI

β̃2
+ σ2 k

n2
).

Next we present the proof of Theorem 4.13.1, Corollary 4.6.2 and Corollary 4.6.4.

4.13.2 Proof of Theorem 4.13.1

Proof of Theorem 4.13.1. First note that the representation function ψ : X1 → Rk is formed by the left

singular vectors of Tk, therefore for any vector w ∈ Rk, there exists a corresponding gw ∈ L2(X2) such that

ψ(x1)⊤w ≡ (Ψ ◦ gw)(x1). In the same way, Tk ◦ g =
∑k
i=1 σi⟨vi, g⟩ui = ψ⊤w where w = σi⟨vi, g⟩. Therefore

for any g ∈ L2(X2), there also exists a w such that ψ(x1)⊤w ≡ (Tk ◦ g)(x1).

apx(ψ) := min
W∈Rk×k

E[∥f∗(X1)− ψ(X1)W ∥2]

=

k∑
y=1

min
W∈Rk×k

E[∥f∗y (X1)− ψ(X1)⊤wy∥2] (wy is the y-th column vector of W)

=

k∑
y=1

E[∥f∗y (X1)− (Tk ◦ gwy
)(X1)∥2]

=

k∑
y=1

min
gy∈L2(X2)

E[∥f∗y (X1)− (Tk ◦ gy)(X1)∥2]

=

k∑
y=1

min
gy∈L2(X2)

E[∥(f∗y (X1)− L ◦ gy)− ((Tk − L) ◦ gy)(X1)∥2]

≤
k∑
y=1

min
gy∈L2(X2)

2(∥(Tk − L) ◦ gy∥2L2(X1)
+ ∥L ◦ gy − f∗y ∥2L2(X1)

). (By AM-GM)

Claim 4.13.3. The joint distribution pX1,X2(x1, x2) satisfies:

∫
X1,X2

pX1,X2(x1, x2)1(g∗1(x1) ̸= g∗2(x2)) ≤ 2α.

Let functions w1,y(x1) = 1(g∗1(x1) = y) ∈ L2(X1), and w2,y(x2) = 1(g∗2(x2) = y) ∈ L2(X2),∀y ∈ [k]. Then we

146

have that:

∑
y

⟨T w2,y, w1,y⟩ ≥ 1− 2α.

Proof.

∫
X1,X2

pX1,X2
(x1, x2)1(g(x1) ̸= g(x2))

=

∫
X1,X2

∫
Y

pX1,x2,Y (x1, x2, y)1(g∗1(x1) ̸= g∗2(x2))

≤
∫
X1,X2

∫
Y

pX1,x2,Y (x1, x2, y) (1(g∗1(x1) ̸= y) + 1(g∗2(x2) ̸= y))

=

∫
X1,Y

pX1,Y (x1, y)1(g∗1(x1 ̸= y)) +

∫
X2,Y

pX2,Y (x2, y)1(g∗2(x2) ̸= y)

=P (g∗1(x1) ̸= y) + P (g∗2(x2) ̸= y) ≤ 2α. (4.19)

Meanwhile,

∑
y

⟨T w2,y, w1,y⟩

=
∑
y

∫
X1

(∫
X2

T (x1, x2)w2,y(x2)pX2(x2)dx2

)
w1,y(x1)pX1(x1)dx1

=
∑
y

∫
X1,X2

1(g∗1(x1) = y)1(g∗2(x2) = y)pX1,X2(x1, x2) (since T (x1, x2) :=
pX1,X2

(x1,x2)

pX1
(x1)pX2

(x2)
)

=

∫
g∗1 (X1)=g∗2 (X2)

pX1,X2
(x1, x2)

=1−
∫
X1,X2

pX1,X2
(x1, x2)1(g(x1) ̸= g(x2))

≥1− 2α. (from Ineq. Equation (4.19))

Claim 4.13.4. The top eigenvalue of T is 1.

Proof. First we show that ∥T ∥op := maxu̸=0
∥T u∥L2(X1)

∥u∥L2(X2)
≤ 1. For any u ∈ L2(Rd), we have that

∥T u∥2 =∥E[u(X2)|X1]∥2L2(X1)

147

=

∫
x1

E[u(X2)|X1]2pX1
(x1)dx1

≤
∫
x1

E[u2(X2)|X1]pX1
(x1)dx1 (Jensen’s inequality that E2[X] ≤ E[X2])

=E[u2(X2)] = ∥u∥2L2(X2)
.

Second, let u(x2) ≡ 1 and v(x1) ≡ 1, we have
∫
x1
T (x1, x2)u(x2)dx2 = 1 = v(x1). Therefore we have

∥Tu∥L2(X1) = 1 for u = 1 and ∥u∥L2(X2) = 1. Therefore ∥T∥op = 1.

Lemma 4.13.5. Let w1,y, w2,y,∀y ∈ [k] be the same from Claim 4.13.3. Then we have:

∑
y

⟨Lw2,y, w1,y⟩ ≥ 1− 2α.

Therefore
∑
y ∥Lw2,y − w1,y∥2 ≤ 4α.

Proof.

∑
y

⟨Lw2,y, w1,y⟩

=
∑
y

∑
h

∫
x1,x2

p(x1|h)p(x2|h)p(h)1(g∗1(x1) = y)1(g∗2(x2) = y)dx2dx1

=
∑
h

∫
x1,x2

p(x1|h)p(x2|h)p(h)1(g∗1(x1) = g∗2(x2))dx2dx1

=
∑
h

∫
x1,x2

p(x1|h)p(x2|h)p(h)(1− 1(g∗1(x1) ̸= g∗2(x2)))dx2dx1

=
∑
h

∫
x1,x2

p(x1|h)p(x2|h)p(h)dx2dx1 −
∑
h

∫
x1,x2

p(x1|h)p(x2|h)p(h)1(g∗1(x1) ̸= g∗2(x2))dx2dx1

=1−
∑
h

∫
x1,x2

p(x1|h)p(x2|h)p(h)1(g∗1(x1) ̸= g∗2(x2))dx2dx1.

∑
h

∫
x1,x2

p(x1|h)p(x2|h)p(h)1(g∗1(x1) ̸= g∗2(x2))dx2dx1

≤
∑
y

∫
x1,x2

p(x1|y)p(x2|y)p(y)(1(g∗1(x1) ̸= y) + 1(g∗2(x2) ̸= y))dx2dx1

=
∑
y

(∫
x1

p(x1|y)

∫
x2

p(x2, h)1(g∗2(x2) ̸= y)dx1 +

∫
x2

p(x2|y)

∫
x1

p(x1, h)1(g∗1(x1) ̸= y)dx2

)

148

=
∑
y

(PX1,Y (g∗1(x1 ̸= y)) + PX1,Y (g∗1(x1 ̸= y)))

≤2α.

Therefore
∑
y⟨Lw2,y, w1,y⟩ ≥ 1 − 2α.

∑
y ∥Lw2,y − w1,y∥2 =

∑
y(∥Lw2,y∥2 + ∥w1,y∥2 − 2⟨w1,y,Lw2,y⟩) ≤

2− 2(1− 2α) = 4α.

Lemma 4.13.6. Let Tk(x1, x2) be the rank-k approximation of T (x1, x2), i.e., Tk(x1, x2) =
∑k
i=1 σiui(x1)vi(x2),

where ui ∈ L2(X1), vi ∈ L2(X2). Then with the same definition of w1,y and w2,y as Claim Claim 4.13.3, we

have that:

k∑
y=1

∥Tkw2,y − w1,y∥2 ≤
16α

1− λ2k+1

,

where λk+1 is the (k + 1)-th singular value of T , i.e., the k-th maximal correlation between X1 and X2

Proof. First, we have that
∑
y E[w2

2,y(X2)] =
∑
y PX2

(g∗2(X2) = y) = 1.

Second from Claim Claim 4.13.4 we know that ∥T∥op := max∥u∥=1 ∥Tu∥ = 1. Also, as we defined that

T = L+ E with L of rank k and ϵ̃CI := ∥E∥, we have |λk+1| ≤ ϵCI.

Write the full decomposition of T as T (x1, x2) =
∑∞
i=1 λiui(x1)vi(x2). We have that:

1− 2α ≤
∑
y

⟨T w2,y, w1,y⟩

≤
√∑

y

∥T w2,y∥2
√∑

y

∥w1,y∥2.

Therefore
√∑

y ∥T w2,y∥2 ≥ 1− 2α.

Meanwhile,

∑
y

∥T w2,y∥2 =
∑
y

(∥Tkw2,y∥2 + ∥(T − Tk)w2,y∥2)

=
∑
y

(∥TkPTk
w2,y∥2 + ∥(T − Tk)P⊥

Tk
w2,y∥2)

149

≤
∑
y

(∥PTk
w2,y∥2 + λ2k+1(∥w2,y∥2 − ∥PTk

w2,y∥2) (since ∥T ∥op = 1 and ∥T − Tk∥ = λk+1)

=(1− λ2k+1)(
∑
y

∥PTk
w2,y∥2) + λ2k+1 (since

∑
y ∥w2,y∥2 = 1.)

Therefore
∑
y ∥PTk

w2,y∥2 ≥
(1−2α)2−λ2

k+1

1−λ2
k+1

and

∑
y

∥(T − Tk)w2,y∥2 ≤λ2k+1(1−
∑
y

∥PTk
w2,y∥2)

≤λ2k+1(1−
(1− 2α)2 − λ2k+1

1− λ2k+1

)

=
4α(1− α)λ2k+1

1− λ2k+1

.

Finally, on one hand we have

∑
y

∥T w2,y − w1,y∥2 =
∑
y

∥T w2,y∥2 + ∥w1,y∥2 − 2⟨T w2,y, w1,y⟩

≤ 2− 2(1− 2α) = 4α.

On the other hand we have:

√∑
y

∥Tkw2,y − w1,y∥2 ≤
√∑

y

∥Tkw2,y − w1,y∥2 +

√∑
y

∥(T − Tk)w2,y∥2

≤2
√
α+

√
4α(1− α)

1− λ2k+1

≤ 4
√
α√

1− λ2k+1

.

Therefore
∑
y ∥Tkw2,y − w1,y∥2 ≤ 16α

1−λ2
k+1

.

Proof of Corollary 4.13.2. This is the corollary from Theorem 4.13.1 by taking g∗i (y) = A† ◦ 1(y = i) such

that L ◦ g∗i ≡ f∗i ,∀i ∈ [k]. This is because L = B ◦ A, and L ◦ A† ◦ 1(y = i) = B ◦ I = E[Y = i|X1] = f∗y .

Therefore the second term is 0 in Theorem 4.13.1 and it remains to prove that the first term is small.

150

Notice

EX1∥Ē ◦ g∗(X1)∥2

=∥Ē ◦ g∗∥2L2(X1)

≤∥Ē∥2op∥A†∥2op
∑
y

∥1(Y = y)∥2L2(Y)

≲ϵ̃2CI/β̃
2.

Therefore the approximation error is upper bounded by ϵ̃2CI/β̃
2.

Proof of Corollary 4.6.4. With Theorem 4.13.1 and we take gy(x2) = w2,y(x2) = 1(g∗2(x2) = y),∀y ∈ [k] as

in Lemma 4.13.5. We only need to upper bound

EX1
∥f∗y − L ◦ w2,y∥2 + ∥(L − Tk) ◦ w2,y∥2.

Notice that

∑
y

EX1∥(L − Tk)w2,y∥2

=
∑
y

EX1∥(L ◦ w2,y − w1,y) + (w1,y − Tk ◦ w2,y)∥2

≤2
∑
y

EX1(∥L ◦ w2,y − w1,y∥2 + ∥(w1,y − Tk ◦ w2,y)∥2)

≤ 16α

1− λ2k
+ 4α. (from Lemma 4.13.6 and Lemma 4.13.5)

Meanwhile, the other term is

∑
y

EX1∥f∗y − L ◦ w2,y∥2

≤2
∑
y

EX1∥f∗y − w1,y∥2 + ∥w1,y − L ◦ w2,y∥2

≤2
∑
y

EX1∥f∗y − w1,y∥2 + 8α (from Lemma 4.13.5)

151

=8α+ 2
∑
y

∫
x1

(p(y|x1)− 1(g∗1(x1) = y))2pX1(x1)dx1

=8α+ 2
∑
y

∫
x1

p2(y|x1)pX1(x1) + 1(g∗1(x1) = y)2pX1(x1)− 2 · 1(g∗1(x1) = y)p(y|x1)pX1(x1)dx1

≤8α+ 2
∑
y

∫
x1

p(y|x1)pX1(x1) + 1(g∗1(x1) = y)pX1(x1)− 2 · 1(g∗1(x1) = y)p(y|x1)pX1(x1)dx1

(since p(y|x1) ≤ 1)

=8α+ 2(2− 2
∑
y

1(g∗1(x1) = y)p(y|x1)pX1
(x1)dx1) = 8α+ 4PX1,Y (g∗1(x1) ̸= y)

≤12α (since Bayes error is bounded by α.)

Altogether we have the approximation error is upper bounded by O(α
1−λ2

k
).

4.14 General results and comparison to multi-view redundancy

We now show a more general form of our results and also connect the multi-view redundancy assumption

from Tosh et al. [2021a] to ours.

4.14.1 General results

We first note that all our results hold for a generalized version of Assumption 4.4.1 and Definition 4.4.2 that

we state below.

Assumption 4.14.1. Suppose Ȳ with |Ȳ | ≤ m is a discrete latent variable that satisfies

1. Ȳ makes X1 and X2 approximately CI as in Definition 4.4.2, i.e.

ϵ2CI := EX1

[
∥E[X2|X1]− EȲ [E[X2|Ȳ]|X1]∥2

]

2. Ȳ also makes X1 and Y approximately CI with

ϵ2Ȳ := EX1

[
∥E[Y |X1]− EȲ [E[Y |Ȳ]|X1]∥2

]

152

3. ΣϕȳX2 is full column rank and ∥ΣY ϕȳΣ
†
X2ϕȳ

∥2 = 1/β, where A† is pseudo-inverse, and ϕȳ is the one-

hot embedding for Ȳ .

Note that our assumptions from the main paper are a special case of Assumption 4.14.1, with ϵȲ = 0 being

satisfied automatically as Ȳ = [Y,Z] is explicitly defined to contain Y in it. Unlike Assumption 4.4.1, we

do not need Y to be a discrete variable, but just need Ȳ to be discrete. We state the generalization of

Theorem 4.4.4 below

Theorem 4.14.2. For a fixed δ ∈ (0, 1), under Assumptions Assumption 4.14.1, Assumption 4.4.3 for ψ̃

and ψ∗ and Assumption 4.3.4 for non-universal feature maps, if n1, n2 ≫ ρ4(d2 + log 1/δ), and we learn the

pretext tasks such that: E∥ψ̃(X1)− ψ∗(X1)∥2F ≤ ϵ2pre. Then the generalization error for downstream task w.p.

1− δ is:

EX1

[
∥E[Y |X1]− Ŵ⊤ψ̃(X1)∥22

]
≤ Õ

(
σ2 d2
n2

+
ϵ2CI

β2
+
ϵ2pre
β2

+ ϵ2Ȳ

)
(4.20)

The result is pretty much the same as Theorem 4.4.4, except for an additional term of ϵ2
Ȳ

. The proof is also

very similar, the difference being that E[E[Y |Ȳ]|X1] can now be expressed as a linear function of ψ∗ instead

of E[Y |X1], and the additional error incurred during to the mismatch between E[Y |X1] and E[E[Y |Ȳ]|X1]

that is ϵ2
Ȳ

will be incurred.

4.14.2 Multi-view redundancy

We show guarantees for our algorithm under the assumption from Tosh et al. [2021a] in the following special

case that satisfies: (1) X1 and X2 are exactly CI given Ȳ (thus ϵCI = 0), (2) the variation in the target Y is

small given X1 and X2. The assumption from Tosh et al. [2021a], in our setting, is equivalent to saying that

ϵX1
and ϵX2

are small, where

ϵ2Xi
= E

[
∥E[Y |Xi]− E[Y |X1, X2]∥2

]
, i ∈ {1, 2}

A similar assumption of multi-view redundancy also appears in Tsai et al. [2020]; however they state it

in terms of information-theoretic quantities instead. We will show that these assumptions are also almost

sufficient to show results in our setting. In particular we show that if Y |X1, X2 is almost deterministic (which

makes sense for a many regression tasks) and if ϵ2X2
is small, then ϵȲ defined in the previous subsection will

153

be small and thus we have meaningful guarantees.

Lemma 4.14.3. Let σ2
Y = Var[Y |X1, X2] be the variance of Y . Ȳ is as defined in Assumption 4.14.1 with

the extra condition that X1 and X2 are exactly CI given Ȳ . Then we have

ϵȲ ≤
√

2(σY + ϵX2
)

Plugging this into Theorem 4.14.2 will give us the desired result. Note however that we did not even use the

fact that ϵX1
is small. Using this part of the assumption, we can get an even stronger result that shows that

even though our learned representation will only X1, if will still predict Y |X1, X2 well.

Corollary 4.14.4. For a fixed δ ∈ (0, 1), under Assumptions Assumption 4.14.1, Assumption 4.4.3 for ψ̃

and ψ∗ and Assumption 4.3.4 for non-universal feature maps, if n1, n2 ≫ ρ4(d2 + log 1/δ), and we learn the

pretext tasks such that: E∥ψ̃(X1)− ψ∗(X1)∥2F ≤ ϵ2pre. Then the generalization error for downstream task w.p.

1− δ is:

EX1,X2

[
∥E[Y |X1, X2]− Ŵ⊤ψ̃(X1)∥22

]
≤ Õ

(
σ2 d2
n2

+
ϵ2pre
β2

+ ϵ2X̄1
+ ϵ2X̄2

+ σ2
Y

)

Thus we see that the assumption from Tosh et al. [2021a] is strong enough for us to be able to show stronger

results than just our assumption. We complete this section by proving Lemma 4.14.3

Lemma 4.14.3. We will also make use of the following lemma that is easily proved using Cauchy-Schwarz

inequality

Lemma 4.14.5. For random variables Z1, . . . , Zn for which E[∥Zi∥2] <∞ for every i ∈ [n], we have

E[∥Z1 + · · ·+ Zn∥2] ≤
(√

E[∥Z1∥2] + · · ·+
√
E[∥Zn∥2]

)2

The proof follows from the following sequence of inequalities that uses Jensen’s inequality, conditional

independence of X1 and X2 and the above lemma. For simplicity we assume that Y is a scalar random

variable, the proof is the same for vector values Y , except squared values will replaced by norm squared

154

values.

ϵ2Ȳ = EX1

[
(E[Y |X1]− EȲ [E[Y |Ȳ]|X1])2

]
= EX1

[
(EȲ [E[Y |Ȳ , X1]|X1]− EȲ [E[Y |Ȳ]|X1])2

]
≤ EX1,Ȳ

[
(E[Y |X1, Ȳ]− E[Y |Ȳ])2

]
= EȲ EX1|Ȳ EX′

1|Ȳ
[
(E[Y |X1, Ȳ]− E[Y |X ′

1, Ȳ])2
]

=
1

2
EȲ EX1|Ȳ EX′

1|Ȳ
[
(EX2

[E[Y |X1, X2, Ȳ]|Ȳ]− EX2
[E[Y |X ′

1, X2, Ȳ]|Ȳ])2
]

≤ 1

2
EȲ EX1|Ȳ EX′

1|Ȳ EX2|Ȳ
[
(E[Y |X1, X2, Ȳ]− E[Y |X ′

1, X2, Ȳ])2
]

=
1

2
E
[
(Z1 + Z2 + Z3 + Z4)2

]
where Z1 = E[Y |X1, X2, Ȳ]−E[Y |X1, X2], Z2 = −E[Y |X ′

1, X2, Ȳ]+E[Y |X ′
1, X2], Z3 = E[Y |X1, X2]−E[Y |X2]

and Z4 = −E[Y |X ′
1, X2] + E[Y |X2]. The first and third inequality follow from Jensen’s inequality, second

inequality follows from E[(X−E[X])2] = 1
2E[(X−X ′)2], and the third equality follows from the CI assumption.

We will bound E[Z2
1] = E[Z2

2] ≤ E[(E[Y |X1, X2, Ȳ] − E[Y |X1, X2])2] ≤ E[(Y − E[Y |X1, X2])2] = σ2
Y again

from Jensen’s inequality. Z3 and Z4 can be handled by observing that E[Z2
3] = E[Z2

4] = E[(E[Y |X1, X2]−

E[Y |X2])2] = ϵ2X2
.

Thus using the above lemma, we get the desired upper bound on ϵȲ .

4.14.3 Showing E[Y |X1] ≈ E[Y |X1, X2]

Our main result Theorem 4.4.4 shows that self-supervised learning can help approximate E[Y |X1] as a linear

function of the learned features ψ̃. In practice, however, it is more common to predict the label Y using the

entire input X = (X1, X2) rather than just X1. We show here that learning E[Y |X1] is sufficient, under mild

assumptions on the task being solved: the Bayes error of the classification task (X1, Y) is low. We first upper

bound the discrepancy between E[Y |X1] and E[Y |X1, X2] based on the Bayes error rate.

Lemma 4.14.6. Suppose ∥Y ∥ ≤ 1 and k = |Y|. Denote the Bayes error for distribution PX1,Y to be

Bayes-error(PX1,Y) = EX1
[1−maxy P (y|X1)]9. Then we have

EX1,X2

[
∥E[Y |X1]− E[Y |X1, X2]∥2

]
≤ 2k Bayes-error(PX1,Y)

9We abuse notation and use P (y|X1) instead of PX1,Y (y|X1).

155

We will show below (for H = Hu) that if PX1,Y has low Bayes error, then predicting E[Y |X1] is as good as

predicting E[Y |X1, X2] up to this small additive error.

Theorem 4.14.7. Suppose ϵBayes = Bayes-error(PX1,Y) and that ψ̃ is ϵ2pre-optimal on the SSL task (as in

Theorem 4.4.4). Under the same conditions as Theorem 4.4.4, with probability 1− δ we have

EX1,X2

[
∥E[Y |X1, X2]− Ŵ⊤ψ̃(X1)∥22

]
≤ Õ

(
σ2 d2
n2

+
ϵ2CI

β2
+
ϵ2pre
β2

)
+ 2ϵBayes

Proof. The law of total expectation gives EX2 [E[Y |X1, X2]|X1] = E[Y |X1], thus it is easy to obtain the

following decomposition

EX1,X2

[
∥E[Y |X1, X2]− Ŵ⊤ψ̃(X1)∥22

]
=EX1

[
∥E[Y |X1]− Ŵ⊤ψ̃(X1)∥22

]
+ EX1,X2

[
∥E[Y |X1]− E[Y |X1, X2]∥22

]
The first term can be upper bounded using Theorem 4.4.4: EX1

[
∥E[Y |X1]− Ŵ⊤ψ̃(X1)∥22

]
= ERψ̃(Ŵ) ≤

Õ
(
σ2 d2

n2
+

ϵ2CI

β2 +
ϵ2pre

β2

)
. The second term is upper bounded by 2ϵBayes by invoking Lemma 4.14.6, and this

completes the proof

Proof of Lemma 4.14.6. Notice the following inequality

EX1,X2

[
∥E[Y |X1]− E[Y |X1, X2]∥2

]
= EX1,X2


∥∥∥∥∥∥
∑
y∈Y

y (P (y|X1)− P (y|X1, X2))

∥∥∥∥∥∥
2


≤ |Y|(max
y
∥y∥2)EX1,X2

[∑
y

(P (y|X1)− P (y|X1, X2))
2

]

≤ kEX1

[
EX2

[∑
y

(P (y|X1)− P (y|X1, X2))
2 | X1

]]

where the first inequality follows from Cauchy-Schwartz and second inequality follows from ∥Y ∥ ≤ 1. Thus

the problem reduces to bounding the inner expectation for every X1. We first note that for every X1, y, we

have P (y|X1) = EX2 [P (y|X1, X2)|X1] from the law of total expectation. This gives

EX2

[∑
y

(P (y|X1)− P (y|X1, X2))
2 | X1

]
=
∑
y

EX2

[
P (y|X1, X2)2|X1

]
− P (y|X1)2

156

≤
∑
y

EX2 [P (y|X1, X2)|X1]− P (y|X1)2 = EX2

[∑
y

P (y|X1, X2)|X1

]
−
∑
y

P (y|X1)2

= 1−
∑
y

P (y|X1)2 ≤ 1−max
y

P (y|X1)2 ≤ 2(1−max
y

P (y|X1))

where the first inequality follows because P (y|X1, X2) ∈ [0, 1] and second follows trivially and third follows

from 1− x2 ≤ 2(1− x) for x ∈ [0, 1]. Combining everything, we get EX1,X2

[
∥E[Y |X1]− E[Y |X1, X2]∥2

]
≤

2kEX1
[1−maxy P (y|X1)] = 2k Bayes-error(PX1,Y), thus proving the result.

4.15 Theoretical analysis for classification tasks

4.15.1 Classification tasks

We now consider the benefit of learning ψ from a class H1 on linear classification task for label set Y = [k].

The performance of a classifier is measured using the standard logistic loss

Definition 4.15.1. For a task with Y = [k], classification loss for a predictor f : X1 → Rk is

ℓclf(f) = E[ℓlog(f(X1), Y)] , where ℓlog(ŷ, y) =

[
− log

(
eŷy∑
y′ e

ŷy′

)]

The loss for representation ψ : X1 → Rd1 and linear classifier W ∈ Rk×d1 is denoted by ℓclf(Wψ).

We note that the function ℓlog is 1-Lipschitz in the first argument. The result will also hold for the hinge loss

ℓhinge(ŷ, y) = (1− ŷy + maxy′ ̸=y ŷy′)+ which is also 1-Lipschitz, instead of ℓlog.

We assume that the optimal regressor f∗H1
for one-hot encoding also does well on linear classification.

Assumption 4.15.2. The best regressor for 1-hot encodings in H1 does well on classification, i.e. ℓclf(γf
∗
H1

) ≤

ϵone-hot is small for some scalar γ.

Remark 4.15.3. Note that if H1 is universal, then f∗H1
(x1) = E[Y |X1 = x1] and we know that f∗H1

is the

Bayes-optimal predictor for binary classification. In general one can potentially predict the label by looking at

arg maxi∈[k] f
∗
H1

(x1)i. The scalar γ captures the margin in the predictor f∗H1
.

We now show that using the classifier Ŵ obtained from linear regression on one-hot encoding with learned

157

representations ψ̃ will also be good on linear classification. The proof is in Section 4.15

Theorem 4.15.4. For a fixed δ ∈ (0, 1), under the same setting as Theorem 4.4.4 and Assumption 4.15.2,

we have:

ℓclf

(
γŴ ψ̃

)
≤ Õ

γ
√
σ2
d2
n2

+
ϵ2

β2
+
ϵ2pre
β2

+ ϵone-hot,

with probability 1− δ.

Proof of Theorem 4.15.4. We simply follow the following sequence of steps

ℓclf

(
γŴ ψ̃

)
= E[ℓlog

(
γŴ ψ̃(X1), Y

)
]

≤(a) E
[
ℓlog

(
γf∗H1

(X1), Y
)

+ γ∥Ŵ ψ̃(X1)− f∗H1
(X1)∥

]
≤(b) ϵone-hot + γ

√
E
[
∥Ŵ ψ̃(X1)− f∗H1

(X1)∥2
]

= ϵone-hot + γ
√

ERψ̃[Ŵ]

where (a) follows because ℓlog is 1-Lipschitz and (b) follows from Assumption 4.15.2 and Jensen’s inequality.

Plugging in Theorem 4.4.4 completes the proof.

4.16 Four different ways to use CI

In this section we propose four different ways to use conditional independence to prove zero approximation

error, i.e.,

Claim 4.16.1 (informal). When conditional independence is satisfied: X1⊥X2|Y , and some non-degeneracy

is satisfied, there exists some matrix W such that E[Y |X1] = WE[X2|X1].

We note that for simplicity, most of the results are presented for the jointly Gaussian case, where everything

could be captured by linear conditional expectation EL[Y |X1] or the covariance matrices. When generalizing

the results for other random variables, we note just replace X1, X2, Y by ϕ1(X1), ϕ2(X2), ϕy(Y) will suffice

the same arguments.

158

4.16.1 Inverse covariance matrix

Write Σ as the covariance matrix for the joint distribution PX1X2Y .

Σ =

ΣXX ΣXY

Σ⊤
Y Y ΣY Y

 , Σ−1 =

A ρ

ρ⊤ B


where A ∈ R(d1+d2)×(d1+d2), ρ ∈ R(d1+d2)×k,B ∈ Rk×k. Furthermore

ρ =

ρ1
ρ2

 ; A =

A11 A12

A21 A22


for ρi ∈ Rdi×k, i = 1, 2 and Aij ∈ Rdi×dj for i, j ∈ {1, 2}.

Claim 4.16.2. When conditional independence is satisfied, A is block diagonal matrix, i.e., A12 and A21

are zero matrices.

Lemma 4.16.3. We have the following

E[X1|X2] = (A11 − ρ̄1ρ̄⊤1)−1(ρ̄1ρ̄2
⊤ −A12)X2 (4.21)

E[X2|X1] = (A22 − ρ̄2ρ̄⊤2)−1(ρ̄2ρ̄1
⊤ −A21)X1 (4.22)

E[Y |X] = −B− 1
2 (ρ̄⊤1 X1 + ρ̄⊤2 X2) (4.23)

where ρ̄i = ρiB
− 1

2 for i ∈ {1, 2}. Also,

(A11 − ρ̄1ρ̄⊤1)−1ρ̄1ρ̄
⊤
2 =

1

1− ρ̄⊤1 A
−1
11 ρ̄1

A−1
11 ρ̄1ρ̄

⊤
2

(A22 − ρ̄2ρ̄⊤2)−1ρ̄2ρ̄
⊤
1 =

1

1− ρ̄⊤2 A
−1
22 ρ̄2

A−1
22 ρ̄2ρ̄

⊤
1

Proof. We know that E[X1|X2] = Σ12Σ
−1
22 X2 and E[X2|X1] = Σ21Σ

−1
11 x1, where

ΣXX =

Σ11 Σ12

Σ21 Σ22



159

First using ΣΣ−1 = I, we get the following identities

ΣXXA + ΣXY ρ
⊤ = I (4.24)

Σ⊤
XYA + ΣY Y ρ

⊤ = 0 (4.25)

ΣXXρ+ ΣXYB = 0 (4.26)

Σ⊤
XY ρ+ ΣY YB = I (4.27)

From Equation (4.26) we get that ΣXY = −ΣXXρB
−1 and plugging this into Equation (4.24) we get

ΣXXA−ΣXXρB
−1ρ⊤ = I

=⇒ ΣXX = (A− ρB−1ρ⊤)−1 = (A− ρ̄ρ̄⊤)−1

=⇒

Σ11 Σ12

Σ21 Σ22

 =


A11 − ρ̄1ρ̄⊤1 A12 − ρ̄1ρ̄⊤2

A21 − ρ̄2ρ̄⊤1 A22 − ρ̄2ρ̄⊤2




−1

We now make use of the following expression for inverse of a matrix that uses Schur complement: M/α =

δ − γα−1β is the Schur complement of α for M defined below

If M =

α β

γ δ

 , then, M−1 =

α−1 + α−1β(M/α)−1γα−1 −α−1β(M/α)−1

−(M/α)−1γα−1 (M/α)−1


For M = (A− ρ̄ρ̄⊤), we have that ΣXX = M−1 and thus

Σ12Σ
−1
22 = −α−1β(M/α)−1((M/α)−1)−1

= −α−1β

= (A11 − ρ̄1ρ̄⊤1)−1(ρ̄1ρ̄
⊤
2 −A12)

This proves Equation (4.21) and similarly Equation (4.22) can be proved.

For Equation (4.23), we know that E[Y |X = (X1, X2)] = ΣY XΣ
−1
XXX = Σ⊤

XYΣ
−1
XXX. By using Equa-

tion (4.26) we get ΣXY = −ΣXXρB
−1 and thus

E[Y |X = (X1, X2)] = −B−1ρ⊤ΣXXΣ−1
XXX

160

= −B−1ρ⊤X = B−1(ρ⊤1 X1 + ρ⊤2 X2)

= −B− 1
2 (ρ̄⊤1 X1 + ρ̄⊤2 X2)

For the second part, we will use the fact that (I − ab⊤)−1 = I + 1
1−a⊤b

ab⊤. Thus

(A11 − ρ̄1ρ̄⊤1)−1ρ̄1ρ̄2 = (I −A−1
11 ρ̄1ρ̄

⊤
1)A−1

11 ρ̄1ρ̄
⊤
2

= (I +
1

1− ρ̄⊤1 A
−1
11 ρ̄1

A−1
11 ρ̄1ρ̄1)A−1

11 ρ̄1ρ̄
⊤
2

= A−1
11 (I +

1

1− ρ̄⊤1 A
−1
11 ρ̄1

ρ̄1ρ̄1A
−1
11)ρ̄1ρ̄

⊤
2

= A−1
11 (ρ̄1ρ̄

⊤
2 +

ρ̄1A
−1
11 ρ̄1

1− ρ̄⊤1 A
−1
11 ρ̄1

ρ̄1ρ̄
⊤
2)

= A−1
11 ρ̄1ρ̄

⊤
2 (1 +

ρ̄1A
−1
11 ρ̄1

1− ρ̄⊤1 A
−1
11 ρ̄1

)

=
1

1− ρ̄⊤1 A
−1
11 ρ̄1

A−1
11 ρ̄1ρ̄

⊤
2

The other statement can be proved similarly.

Claim 4.16.4.

E[X2|X1] = (A22 − ρ̄2ρ̄⊤2)−1ρ̄2ρ̄
⊤
1 X1.E[Y |X1] = −B−1/2ρ̄⊤1 X1 −B−1/2ρ̄⊤2 E[X2|X1]

Therefore E[Y |X1] is in the same direction as E[X2|X1].

4.16.2 Closed form of linear conditional expectation

Refer to Claim Claim 4.10.3 and proof of Lemma 4.10.4. As this is the simplest proof we used in our

paper.

4.16.3 From law of iterated expectation

EL[X2|X1] =EL[EL[X2|X1, Y]|X1]

=E

[ΣX2X1
,ΣX2Y]

ΣX1X1
ΣX1Y

ΣY X1 ΣY Y


−1 X1

Y

 | X1



161

=AX1 + BEL[Y |X1].

Using block matrix inverse,

A = (ΣX2X1 −ΣX2YΣ
−1
Y YΣY X1)(ΣX1X1 −ΣX1YΣ

−1
Y YΣY X1)−1 ∈ Rd2×d1

= ΣX1X2|Y (ΣX1X1|Y)−1

B = ΣX2Y |X1
(ΣY Y |X1

)−1 ∈ Rd2×Y .

Therefore in general (without conditional independence assumption) our learned representation will be

ψ(x1) = Ax1 + Bf∗(x1), where f∗(·) := EL[Y |X1].

It’s easy to see that to learn f∗ from representation ψ, we need A to have some good property, such as light

tail in eigenspace, and B needs to be full rank in its column space.

Notice in the case of conditional independence, ΣX1X2|Y = 0, and A = 0. Therefore we could easily learn f∗

from ψ if X2 has enough information of Y such that ΣX2Y |X1
is of the same rank as dimension of Y .

4.16.4 From E[X2|X1, Y] = E[X2|Y]

Proof. Let the representation function ψ be defined as follows, and let we use law of iterated expectation:

ψ(·) := E[X2|X1] =E[E[X2|X1, Y]|X1]

=E[E[X2|Y]|X1] (uses CI)

=
∑
y

P (Y = y|X1)E[X2|Y = y]

=:f(X1)⊤A,

where f : Rd1 → ∆Y satisfies f(x1)y = P (Y = y|X1 = x1), and A ∈ RY×d2 satisfies Ay,: = E[X2|Y = y].

Here ∆d denotes simplex of dimension d, which represents the discrete probability density over support of

size d.

Let B = A† ∈ RY×d2 be the pseudoinverse of matrix A, and we get BA = I from our assumption that A is

162

of rank |Y|. Therefore f(x1) = Bψ(x1),∀x1. Next we have:

E[Y |X1 = x1] =
∑
y

P (Y = y|X1 = x1)× y

=Ŷ f(x1)

=(Ŷ B) · ψ(X1).

Here we denote by Ŷ ∈ Rk×Y , Ŷ:,y = y that spans the whole support Y . Therefore let W ∗ = Ŷ B will finish

the proof.

163

Figure 4.3: Left: MSE of using ψ to predict Y versus using X1 directly to predict Y . Using ψ consistently
outperforms using X1. Right: MSE of ψ learned with different n1. The MSE scale with 1/n2 as indicated
by our analysis. Simulations are repeated 100 times, with the mean shown in solid line and one standard
error shown in shadow.

4.17 Experiment details

In this section, we include more experiment setup and results.

Simulations. All the experiments are performed on a desktop computer with Intel i7-8700K, 16GB RAM.

Following Theorem 4.4.4, we know that the Excessive Risk (ER) is also controlled by (1) the number of

samples for the pretext task (n1), and (2) the number of samples for the downstream task (n2), besides k

and ϵCI as discussed in the main text. In this simulation, we enforce strict conditional independence, and

explore how ER varies with n1 and n2. We generate the data the same way as in the main text, and keep

α = 0, k = 2, d1 = 50 and d2 = 40 We restrict the function class to linear model. Hence ψ is the linear

model to predict X2 from X1 given the pretext dataset. We use Mean Squared Error (MSE) as the metric,

since it is the empirical version of the ER. As shown in Figure Figure 4.3, ψ consistently outperforms X1 in

predicting Y using a linear model learnt from the given downstream dataset, and ER does scale linearly with

1/n2, as indicated by our analysis.

Computer Vision Task. For the context encoder part, we use all the recommended hyperparameter

as in the provided source codes. For the downstream resnet18 regression, we perform grid search over the

hyperparameters to achieve best performance. Specifically, we set the batch size to be 24, and traing the

resnet18 for 50 epoches. One pass of training (loops over all the settings with different number of labeled data)

is finished within 6 hours. All the experiments are performed on a desktop computer with Intel i7-8700K,

16GB RAM, and NVIDIA Geforce 1080. Training of the context encoder is finished within 12 hours. The

164

Figure 4.4: Left: Mean Squared Error comparison of predicting gender and predicting date. Right: the
spectrum comparison of covariance condition on gender and condition on date.

Figure 4.5: Performance on SST of baseline ϕ1(x1), i.e. bag-of-words, and learned ψ(x1) for the two settings.
Left: Classification accuracy, Right: Regression MSE.

yearbook dataset is distributed under BSD license.

Following the same procedure, we try to predict the gender YG. We normalize the label (YG, YD) to unit

variance, and confine ourself to linear function class. That is, instead of using a context encoder to impaint

X2 from X1, we confine ψ to be a linear function. As shown on the left of Figure Figure 4.4, the MSE

of predicting gender is higher than predicting dates. We find that ∥Σ−1/2
X1X1

ΣX1X2|YG
∥F = 9.32, while

∥Σ−1/2
X1X1

ΣX1X2|YD
∥F = 8.15. Moreover, as shown on the right of Figure Figure 4.4, conditioning on YD

cancels out more spectrum than conditioning on YG. In this case, we conjecture that, unlike YD, YG does

not capture much dependence between X1 and X2. And as a result, ϵCI is larger, and the downstream

performance is worse, as we expected.

165

NLP Task. We look at the setting where both X1 and X2 are the set of sentences and perform experiments

by enforcing CI with and without latent variables. The downstream task is sentiment classification with

the Stanford Sentiment Treebank (SST) dataset [Socher et al., 2013], where inputs are movie reviews and

the label set Y is {±1}. We learn a linear representation ψ(X1) = Bϕ(X1) in the SSL phase as defined in

Section 4.4. Here we X1, we pick ϕ(X1) to be the bag-of-words representations of the movie review X1, which

has a vocabulary size of 13848 For X2 we use a d2 = 300 dimensional embedding of the sentence, that is

the mean of word vectors (random Gaussians) for the words in the review X2. For SSL data we consider

2 settings, (a) enforce CI with the labels Y, (b) enforce CI with extra latent variables, for which we use

fine-grained version of SST with label set Ȳ = {1, 2, 3, 4, 5}10.. In this setting, for every label y ∈ Y (or

ȳ ∈ Ȳ), we independently sample movie reviews X1 and X2 from the class y (or ȳ), thus simulating the CI

(or approximate CI) condition. We test the learned ψ on SST binary task with linear regression and linear

classification; results are presented in Figure Figure 4.5. We observe that in both settings ψ outperforms ϕ1,

especially in the small-sample-size regime. Exact CI is better than CI with latent variables, as suggested by

theory.

The function ψ (or equivalently matrix B ∈ R300×13848) is learnt by minimizing ∥X2 −Bϕ(X1)∥2 averaged

over the SSL train data with an ∥ · ∥2F penalty on the matrix B. We use the scikit-learn RidgeRegressionCV11

solver for this with regularizer parameters in the list [0.001, 0.1, 10, 1000]. Plotting Figure Figure 4.5 took

less than an hour when using 8 Intel(R) Xeon(R) Silver 4214 CPUs on a cluster.

10Ratings {1, 2} correspond to y = −1 and {4, 5} correspond to y = 1
11https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html

166

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html

Part III

Language Modeling

167

Chapter 5

A Mathematical Exploration of Why

Language Models Help Solve

Downstream Tasks

This chapter focuses on the study of language modeling, based on previously published work [Saunshi

et al., 2021]. Autoregressive language models, pretrained using large text corpora to do well on next word

prediction, have been successful at solving many downstream tasks, even with zero-shot usage. However,

there is little theoretical understanding of this success. This work initiates a mathematical study of this

phenomenon for the downstream task of text classification by considering the following questions: (1) What

is the intuitive connection between the pretraining task of next word prediction and text classification? (2)

How can we mathematically formalize this connection and quantify the benefit of language modeling? For (1),

we hypothesize, and verify empirically, that classification tasks of interest can be reformulated as sentence

completion tasks, thus making language modeling a meaningful pretraining task. With a mathematical

formalization of this hypothesis, we make progress towards (2) and show that language models that are

ϵ-optimal in cross-entropy (log-perplexity) learn features that can linearly solve such classification tasks with

O(
√
ϵ) error, thus demonstrating that doing well on language modeling can be beneficial for downstream

tasks. We experimentally verify various assumptions and theoretical findings, and also use insights from the

168

analysis to design a new objective function that performs well on some classification tasks.

5.1 Introduction

The construction of increasingly powerful language models has revolutionized natural language processing

(NLP). Using gigantic text corpora and a cross-entropy objective, language models are trained to predict a

distribution over the next word to follow a given context (piece of text). Pretrained language models are

useful for many downstream NLP tasks, either as initializations [Ramachandran et al., 2017, Howard and

Ruder, 2018] or as a source of contextual word embeddings [McCann et al., 2017, Peters et al., 2018]. Recent

models [Radford et al., 2019, Brown et al., 2020] have even bypassed the need for careful fine-tuning and have

demonstrated strong performance on downstream tasks without fine-tuning. This work aims to understand

this incredible success of language models.

Since next word prediction is a powerful test of language understanding, at an intuitive level it is believable

that doing well on language modeling can help with many diverse NLP tasks. At the same time, it is

quite intriguing how improvements in the test perplexity of language models translate to better downstream

performance. Attempting to understand this phenomenon naturally raises the following questions: (a) why

should training on the next-word prediction task, with the cross-entropy objective, result in useful features

for downstream tasks? (b) what role do inductive biases of the model architecture and training algorithms

play in this empirical success? Given the nascency of deep learning theory, it is very challenging to say

anything mathematically precise about (b) for deep networks. Given these difficulties, this work focusses

on the mathematical study of (a) by exploring if and how quantitative improvements on downstream NLP

tasks can be mathematically guaranteed for language models that do well on the cross-entropy objective.

As a first cut analysis, we restrict attention to text classification tasks and the striking observation that

they can be solved fairly well with linear classifiers on top of fixed language models features, i.e. without

finetuning (Table 5.1). Although we treat models as black boxes, just first-order optimality conditions of

the cross-entropy objective reveal interesting properties of learned features, leading to an understanding of

their success on classification tasks. Insights from the analysis help us construct a simple objective (Quad),

that provably learns useful features for classification tasks, as also verified empirically. We summarize our

contributions along with an overview of the chapter below.

In Section 5.2, we set up notation and formally describe language modeling and the ubiquitous low-dimensional

169

softmax parametrization, along with a description of the cross-entropy objective and properties of its optimal

solutions. We then describe the observation, in Section 5.3.1, that text classification tasks of interest can

be reformulated as sentence completion tasks. Amenability to such a reformulation is mathematically

formalized (Section 5.3.2) as the classification task being a natural task: tasks that can be solved linearly

using conditional distribution over words following an input text. Section 5.4 presents our main results,

Theorems 5.4.1 and 5.4.3, that use the above formalization to mathematically quantify the utility of language

model features on natural tasks: ϵ-optimal language model (in cross-entropy) will do O(
√
ϵ)-well on such

tasks. Theorem 5.4.3 shows a stronger result for low-dimensional softmax models by leveraging a new tool,

conditional mean features (Definition 5.4.2), which we show (Section 5.6) to be effective in practice. The

usefulness of the language model features themselves is demonstrated by arguing a weak linear relationship

between them and conditional mean features. In Section 5.5.2, we present a new mathematically motivated

objective (Quad) that has formal guarantees. Experiments in Section 5.6 verify the sentence completion

reformulation idea and the good performance of conditional mean features on standard benchmarks.

5.1.1 Related work

Text embedding methods: Prior to language models, large text corpora like Wikipedia [Merity et al., 2016]

were used to learn low-dimensional embeddings for words [Mikolov et al., 2013b,a, Pennington et al., 2014]

and subsequently for sentences [Kiros et al., 2015, Arora et al., 2017, Pagliardini et al., 2018, Logeswaran and

Lee, 2018] for downstream task usage. These methods were inspired by the distributional hypothesis [Firth,

1957, Harris, 1954], which posits that meaning of text is determined in part by the surrounding context.

Recent methods like BERT [Devlin et al., 2019] and variants [Lan et al., 2020, Yang et al., 2019, Liu et al.,

2019] learn models from auxiliary tasks, such as sentence completion, and are among the top performers

on downstream tasks. In this work we consider autoregressive models and make a distinction from masked

language models like BERT; Table 5.2 shows that language model and BERT features have comparable

performances.

Language models for downstream tasks: We are interested in language models [Chen and Goodman,

1999], especially those that use neural networks to compute low-dimensional features for contexts and

parametrize the next word distribution using softmax [Xu and Rudnicky, 2000, Bengio et al., 2003]. Language

models have shown to be useful for downstream tasks as initializations [Ramachandran et al., 2017, Howard

and Ruder, 2018] or as learned feature maps [Radford et al., 2017, McCann et al., 2017, Peters et al.,

170

2018]. The idea of phrasing classification tasks as sentence completion problems to use language models is

motivated by recent works [Radford et al., 2019, Puri and Catanzaro, 2019, Schick and Schütze, 2021] that

show that many downstream tasks can be solved by next word prediction for an appropriately conditioned

language model. This idea also shares similarities with work that phrase a suite of downstream tasks as

question-answering tasks [McCann et al., 2018] or text-to-text tasks [Raffel et al., 2019] and symbolic reasoning

as fill-in-the-blank tasks [Talmor et al., 2020]. Our work exploits this prevalent idea of task rephrasing to

theoretically analyze why language models succeed on downstream tasks.

Relevant theory: Since the success of early word embedding algorithms like word2vec [Mikolov et al.,

2013a] and GloVe [Pennington et al., 2014], there have been attempts to understand them theoretically. Levy

and Goldberg [2014] argue that word2vec algorithm implicitly factorizes the PMI matrix. Noise Contrastive

Estimation (NCE) theory is used to understand word embeddings [Dyer, 2014] and to show parameter

recovery for negative sampling based conditional models [Ma and Collins, 2018]. A latent variable model

[Arora et al., 2016] is used to explain and unify various word embedding algorithms. Theoretical justification

is provided for sentence embedding methods either by using a latent variable model [Arora et al., 2017]

or through the lens of compressed sensing [Arora et al., 2018]. Also relevant is recent work on theory for

contrastive learning [Arora et al., 2019, Tosh et al., 2021b,a, Wang and Isola, 2020] and reconstruction-based

methods [Lee et al., 2021], which analyze the utility of self-supervised representations learned for downstream

tasks. Our work is the first to analyze the efficacy of language model features on downstream tasks.

5.2 Language modeling and optimal solutions

We use S to denote the discrete set of all contexts, i.e. complete or partial sentences (prefixes), W to denote

the vocabulary of words, with V = |W| being the vocabulary size. For a discrete set A, let ∆A denote the set

of distributions on A. We use p, pL ∈ ∆S to denote probability distributions over S, and p·|s, p
∗
·|s ∈ ∆W to

denote conditional distributions, where p·|s(w) is the predicted probability of word w following context s and

p∗·|s(w) denotes the true conditional probability. Boldface p·|s,p
∗
·|s ∈ RV denote vectors of probabilities for

p·|s, p
∗
·|s ∈ ∆W . For v ∈ RV , v(w) indexes the coordinate for w ∈ W ; p·|s(w) is the probability of w according

to p·|s. We use ϕw ∈ Rd to denote a d-dimensional embedding for word w; word embeddings are stacked into

the columns Φ ∈ Rd×V . We use f : S → Rd for a feature map from contexts to d-dimensional embeddings,

e.g. f(s) can be the output of a Transformer model for input context s ∈ S. For embeddings {θs}s∈S with

θs ∈ RD (any D), we use {θs} to denote g : S → RD such that g(s) = θs.

171

5.2.1 Language modeling using cross-entropy

Language model aims to learn the true distribution of a text corpus and a popular approach to do so is

through next word prediction. Given a context (e.g., a sentence s ∈ S), it predicts a distribution p·|s over

the word to follow, e.g. for the context “The food was ”, the model could place high probabilities on words

“delicious”, “expensive”, “bland”, etc. We use pL to denote the true distribution over the context set S in the

language modeling corpus. A standard approach is to minimize the expected cross-entropy loss between the

true distribution p∗·|s and the model prediction p·|s. We define the cross-entropy loss for a language model

with output vector of probabilities {p·|s}s∈S as

ℓxent({p·|s}) = E
s∼pL

E
w∼p∗·|s

[
− log(p·|s(w))

]
= E
s∼pL

[
ℓxent,s(p·|s)

]
(5.1)

To understand what language models learn, we look at the optimal solution of the cross-entropy objective.

While one cannot practically hope to learn the optimal solution due to optimization, statistical and expressivity

limitations, the optimal solution at least tells us the best that language modeling can hope to do. A well-known

property of cross-entropy objective is that its optimal solution is p∗
·|s, which can be proved by noting that

ℓxent,s(p·|s) = DKL(p∗·|s, p·|s) + C.

Proposition 5.2.1 (Cross-entropy recovers p∗
·|s). The unique minimizer of ℓxent({p·|s}) is p·|s = p∗

·|s for

every s ∈ support(pL).

5.2.2 Softmax parametrized language modeling

Unlike traditional language models like n-gram models, neural language models parametrize the conditional

distribution p·|s as a softmax computed using low dimensional embeddings. For an embedding θ ∈ Rd,

the softmax distribution over W using word embeddings Φ ∈ Rd×V is pθ,Φ(w) = eθ
⊤ϕw/Zθ, where Zθ =∑

w′∈W eθ
⊤ϕw′ is the partition function. While pθ,Φ depends on Φ, we will use pθ instead whenever Φ is

clear from context. Just like p∗
·|s, we can interpret pθ ∈ RV as a vector of probabilities for the distribution

pθ.

We now describe the abstraction for softmax models that is applicable to most neural models. A language

model first embeds a context s into f(s) ∈ Rd using a feature map f : S → Rd that is parametrized by an

architecture of choice (e.g. Transformer [Vaswani et al., 2017]). The output conditional distribution is set to

be the softmax distribution induced by the context embedding f(s) and word embeddings Φ, i.e. p·|s = pf(s).

172

The cross-entropy in its familiar form is presented below

ℓxent(f,Φ) = E
s∼pL

E
w∼p∗·|s

[
− log(pf(s)(w))

]
= E
s∼pL

[
E

w∼p∗·|s
[−f(s)⊤ϕw] + log(Zf(s))

]
(5.2)

We rewrite it as ℓxent(f,Φ) = E
s∼pL

[ℓxent,s(f(s),Φ)], where ℓxent,s(θ,Φ) = ℓxent,s(pθ,Φ) is the cross-entropy

loss for a context s that uses embedding θ. Analogous to Proposition 5.2.1, we would like to know the optimal

d-dimensional feature map f∗ and the induced conditional distribution pf∗(s)
1.

Proposition 5.2.2 (Softmax models recover p∗
·|s on a subspace). Fix a fixed Φ, if f∗ ∈ arg minf :S→Rd ℓxent(f,Φ)

exists, then Φpf∗(s) = Φp∗
·|s for every s ∈ support(pL).

Unlike Proposition 5.2.1, pf∗(s) ∈ RV is only guaranteed to be equal to p∗
·|s ∈ RV on the d-dimensional

subspace spanned by rows of Φ ∈ Rd×V . We may not learn p∗
·|s exactly when d < V , but this result at least

guarantees learning p∗
·|s on a linear subspace determined by word embeddings Φ. This forms the basis for our

main results later and is proved by using the first-order optimality condition, i.e. ∇θℓxent,s(f∗(s)) = 0, ∀s ∈ S.

The gradient of cross-entropy is ∇θℓxent,s(θ) = −Φp∗
·|s+∇θZθ/Zθ = −Φp∗

·|s+Φpθ. Setting it to 0 completes the

proof. We use the properties of optimal solutions to understand why language models help with classification

tasks.

5.3 Using language models for classification tasks

Sections 5.2.1 and 5.2.2 suggest that language models aim to learn p∗
·|s, or a low-dimensional projection

Φp∗
·|s. Thus to understand why language models help with downstream tasks, a natural starting point is to

understand how access to p∗
·|s can help with downstream tasks. In a thought experiment, we use oracle access

to p∗
·|s for any s and demonstrate that sentence classification task can be solved by reformulating it as a

sentence completion problem and using p∗
·|s to get completions to predict the label. This sentence completion

reformulation is mathematically formalized as natural tasks.

5.3.1 Sentence completion reformulation

For exposition, we consider the sentence classification task of sentiment analysis, where the inputs are movie

reviews (subset of S) and labels belongs to {±1}, denoting positive and negative reviews.

Classification task as sentence completion: Can we predict the label for a movie review s by using

1A finite minimizer may not always exist. This is handled in Section 5.4 that deals with ϵ-optimal solutions.

173

p∗
·|s? One way is to use p∗

·|s to compare probabilities of “:)” and “:(” following a movie review and to predict

sentiment based on which is higher. This seems like a reasonable strategy, since “:)” is likelier than “:(” to

follow a positive movie review. One issue, however, is that p∗
·|s will place much higher probability on words

that start sentences, like “The”, rather than discriminative words useful for the task. To allow a larger set of

grammatically correct completions, we can append a prompt like “This movie is ” at the end of all movie

reviews and query probabilities of indicative adjectives like good, bad, interesting, boring etc. that are better

indicators of sentiment. This approach of adding a prompt can also work for other classification tasks. For

the AG news dataset [Zhang et al., 2015] containing news articles from 4 categories (world, science/tech.,

sports, business), a prompt like “This article is about ” can help solve the task. The theoretical and practical

relevance of prompts is discussed in Theorem 5.4.1, and Section 5.6 respectively. We note that the choice of

prompts and completion words is less important than the underlying idea of sentence completion reformulation

and its formalization.

Solving tasks using a linear function of p∗
·|s: The above process is actually a sub-case of using a

linear classifier on top of p∗
·|s ∈ RV . For sentiment analysis, if w+ = “:)” and w− = “:(”, then the sign of

p∗
·|s(w+)− p∗

·|s(w−) can predict the sentiment. This strategy can be expressed as v⊤p∗
·|s, where the linear

classifier v ∈ RV has v(w+) = 1, v(w−) = −1 and v(w′) = 0 for w′ ∈ W\{w+, w−}. Similarly with the

prompt, we can assign positive weights in v to adjectives like “good” and negative weights to adjectives like

“boring”. Strength of sentiment in different adjectives (e.g., “good” vs “amazing”) can be captured through

different weights. This equivalence between sentence completion reformulation and linear classifier on p∗
·|s is

further explored in Section 5.11.1. Other tasks can be similarly solved with a different set of words for each

class. We verify experimentally that SST and AG news tasks can be solved by a linear function of probabilities

of just a small subset of words in Section 5.6 and for many other classification tasks in Section 5.13.1, thus

lending credibility to the sentence completion view.

5.3.2 Natural classification tasks

We now translate the above sentence completion reformulation into a reasonable mathematical characterization

for classification tasks of interest. Firstly we formally define text classification tasks and the standard metric

for performance of linear classification on fixed features. A binary classification task2 T is characterized by a

distribution pT over S × {±1}, where the input s is a piece of text from S and the label y is in {±1}. Given

a feature map g : S → RD (arbitrary D), T is solved by fitting a linear classifier v ∈ RD on top of g(s) and

2Extending to k-way tasks is straightforward.

174

the metric of classification loss is

ℓT (g,v) = E(s,y)∼pT
[
ℓ(v⊤g(s), y)

]
; ℓT (g) = inf

v∈RD
ℓT (g,v) (5.3)

where ℓ is a 1-Lipschitz surrogate to the 0-1 loss, like the hinge loss ℓ(ŷ, y) = (1− yŷ)+ or the logistic loss

ℓ(ŷ, y) = log(1 + e−yŷ). For given embeddings {θs}s∈S , the classification loss is written as ℓT ({θs},v) =

E(s,y)∼pT [ℓ(v⊤θs, y)].

We now formalize classification tasks amenable to sentence completion reformulation, from Section 5.3.1), as

(τ,B)-natural tasks, i.e. tasks that achieve a small classification loss of τ by using a linear classifier with

ℓ∞-norm bounded3 by B on top of features p∗
·|s ∈ RV .

Definition 5.3.1. A classification task T is (τ,B)-natural if min
v∈RV ,∥v∥∞≤B

ℓT ({p∗
·|s},v) ≤ τ .

While we motivated this formalization of linear classification over p∗
·|s in Section 5.3.1, we provide a mathe-

matical justification in Section 5.11.1, along with interpretations for τ and B that relate them to the Bayes

optimal predictor and probability mass of indicative words respectively. Low dimensional softmax models,

however, only learn p∗
·|s in the subspace of Φ, per Proposition 5.2.2. Thus we are also interested in subset of

tasks that this subspace can solve.

Definition 5.3.2. Task T is (τ,B)-natural w.r.t. Φ ∈ Rd×V if min
v∈row-span(Φ),∥v∥∞≤B

ℓT ({p∗
·|s},v) ≤ τ .

Note that every (τ,B)-natural task w.r.t. Φ is trivially (τ,B)-natural, though the converse may not hold.

However it can be argued that if Φ has some “nice properties”, then (τ,B)-natural tasks of interest will roughly

also be (τ,B)-natural w.r.t. Φ. Capturing the synonym structure of words can be such a nice property, as

discussed in Section 5.11.2. A better understanding of these properties of word embeddings Φ can potentially

enable better performance of language models on downstream tasks. In fact, Section 5.5.2 describes a carefully

designed objective that can learn word embeddings with desirable properties like synonyms having similar

embeddings. In the subsequent sections, we use the above formalization to show guarantees for language

models on natural tasks.

3ℓ∞ makes sense since ∥p∗
·|s∥1 = 1 & ∥ · ∥∞ is dual norm of ∥ · ∥1.

175

5.4 Guarantees for language models on natural tasks

We now show guarantees for features from language models on natural tasks in two cases: 1) for an arbitrary

language model {p·|s} where we use V -dimensional features p·|s ∈ RV for downstream tasks and 2) for

softmax language model (f,Φ) where we use new d-dimensional features Φpf(s) ∈ Rd. Since we cannot

practically hope to learn the optimal solutions described in Propositions 5.2.1 and 5.2.2, we only assume

that the language models are ϵ-optimal in cross-entropy. We first define ℓ∗xent to be the minimum achievable

cross-entropy and ℓ∗xent(Φ) to be the minimum achievable cross-entropy by a d-dimensional softmax language

model using Φ; clearly ℓ∗xent ≤ ℓ∗xent(Φ).

ℓ∗xent = ℓxent({p∗
·|s}), ℓ∗xent(Φ) = E

s∼pL

[
inf
θ∈Rd

ℓxent,s(θ,Φ)

]
(5.4)

We first present the results for arbitrary language models with a proof sketch that describes the main ideas,

following which we present our main results for softmax language models.

5.4.1 Arbitary language models

We show guarantees for a language model that is ϵ-optimal, i.e. ℓxent({p·|s})− ℓ∗xent ≤ ϵ, on (τ,B)-natural

tasks. An important consideration is that the language model distribution pL of contexts is often a diverse

superset of the downstream distribution pT (defined in Section 5.2.2) over sentences, thus requiring us to

show how guarantees of p·|s ≈ p∗
·|s on average over the distribution s ∼ pL transfer to guarantees on a

subset pT . In the worst case, all of the ϵ error in cross-entropy by {p·|s} is incurred on sentences from the

subset pT , leading to pessimistic bounds4. In practice, however, the errors might be more evenly distributed

across pL, thus bypassing this worst case bound. As a first step, we present the worst case bound here;

stronger guarantees are in Section 5.5.1. The worst-case coefficient γ(pT), defined below, captures that pT is

a γ(pT)-fraction of pL.

γ(pT) = sup{γ ∈ (0, 1] : pL(s) ≥ γpT (s) ∀s ∈ S} (5.5)

We now present our results that applies to any language model, regardless of the parametrization (e.g.,

n-gram models, softmax models). The result suggests that small test cross-entropy (hence test perplexity) is

desirable to guarantee good classification performance, thus formalizing the intuition that better language

4For instance if pT is 0.001 fraction of pL, {p·|s} could have 1000ϵ error on pT and 0 error on rest of pL.

176

models will be more useful for downstream tasks.

Theorem 5.4.1. Let {p·|s} be a language model that is ϵ-optimal, i.e. ℓxent({p·|s}) − ℓ∗xent ≤ ϵ, for some

ϵ > 0. For a classification task T that is (τ,B)-natural, we have

ℓT
(
{p·|s}

)
≤ τ +

√
2B2ϵ (γ(pT))

−1

This upper bounds classification loss on task T for V -dimensional features {p·|s} from an ϵ-optimal language

model. We discuss factors that lead to small upper bound and corresponding intuitions.

• ϵ is small: learned language model has smaller cross-entropy (log-perplexity)

• τ is small: task can be solved well through a sentence completion reformulation with a set of indicative

words as completions, as in Section 5.3.1, and has small Bayes error (cf. Section 5.11.1)

• B is small: set of indicative words has high probability mass in p∗
·|s (cf. Section 5.11.1). This could

potentially explain the superior performance when prompts are added (Section 5.6).

• γ(pT) is large: pT is closer to pL; note that γ(pT) ≤ 1 with equality if and only if pT = pL

Thus the bound captures meaningful intuitions about good performance of language models on downstream

tasks. We provide a detailed proof sketch in Section 5.12.1 and a strengthened version of this (Theorem 5.9.2)

is presented in Section 5.12.6. Proving this result requires connecting the classification loss with language

modeling cross-entropy loss and dealing with distribution mismatch; we present a rough outline to do so

below. Since T is (τ,B)-natural, let v∗ be the classifier with ∥v∗∥∞ ≤ B and ℓT ({p∗
·|s},v

∗) ≤ τ . The result

follows from the following 3 inequalities:

ℓT
(
{p·|s},v∗)− ℓT ({p∗

·|s},v
∗) ≤

√
E

s∼pT
[(v∗⊤(p·|s − p∗

·|s))
2] ... Lipschitzness + Jensen’s

E
s∼pT

[(v∗⊤(p·|s − p∗
·|s))

2] ≤ γ(pT)−1 E
s∼pL

[(v∗⊤(p·|s − p∗
·|s))

2] ... Transfer pT to pL

∀v ∈ RV , (v⊤(p·|s − p∗
·|s))

2 ≤ 2∥v∥2∞(ℓxent,s(p·|s)− ℓxent,s(p∗
·|s)) ... Pinsker’s inequality

The first and third inequalities (Lemma 5.12.8 and Lemma 5.12.3) connect the classification loss to the

cross-entropy loss in language modeling, while the second inequality deals with distribution mismatch between

pL and pT . We now present a stronger result for softmax models.

177

5.4.2 Softmax language model with conditional mean features

We now consider a softmax language model with feature map f that satisfies ℓxent(f,Φ) − ℓ∗xent(Φ) ≤ ϵ;

suboptimality is measured w.r.t. the best d-dimensional model, unlike Theorem 5.4.1,. Note that Theorem 5.4.1

can be invoked here to give a bound of ℓT ({pf(s)}) ≤ τ + O(B
√
ϵ+ ϵ∗Φ) on (τ,B)-natural tasks, where

ϵ∗Φ = ℓ∗xent(Φ) − ℓ∗xent is the suboptimality of the best d-dimensional model. The fixed error of O(B
√
ϵ∗Φ)

(even when ϵ = 0), however, is undesirable. We improve on this by proving a stronger result specifically for

softmax models. Inspired by Proposition 5.2.2, our guarantees are for features Φpf(s) ∈ Rd called conditional

mean features.

Definition 5.4.2 (Conditional Mean Features). For a feature map f : S → Rd and Φ ∈ Rd×V , we define

conditional mean features Φpf : S → Rd, where Φpf (s) = Φpf(s), where pf(s) ∈ RV .

We now present the result for softmax language models that has similar implications as Theorem 5.4.1, but

with above-mentioned subtle differences.

Theorem 5.4.3. For a fixed Φ, let f be features from an ϵ-optimal d-dimensional softmax language model,

i.e. ℓxent(f,Φ)− ℓ∗xent(Φ) ≤ ϵ. For a classification task T that is (τ,B)-natural w.r.t. Φ,

ℓT (Φpf) ≤ τ +

√
2B2ϵ (γ(pT))

−1

This result guarantees good performance of conditional mean features Φpf on some natural tasks, thereby

suggesting a novel way to extract features for downstream tasks. We empirically verify the good performance

of Φpf (s) on classifications tasks (Section 5.6) and also find a O(
√
ϵ)-like behavior (Section 5.13.5). The

proof (Section 5.12.3) is similar to that of Theorem 5.4.1, the main difference being the use of the following

inequality, proved using a softmax variant of Pinsker’s inequality (Lemma 5.12.4).

∀v ∈ row-span(Φ), (v⊤(pf(s) − p∗
·|s))

2 ≤ 2∥v∥2∞(ℓxent,s(pf(s))− inf
f∗(s)∈Rd

ℓxent,s(pf∗(s)))

The more general result (Theorem 5.5.1) replaces γ(pT) with a more refined coefficient (Section 5.5.1). While

guarantees are only for natural tasks w.r.t. Φ, Section 5.11.2 discusses why this might be enough for tasks of

interest if word embeddings Φ satisfy nice properties.

178

5.4.3 Φpf (s) is a linear function of f(s)

Theorem 5.4.3 shows that Φpf is useful for linear classification. However, using feature map f directly is

more standard and performs better in practice (Section 5.6). Here we argue that there is a linear relation

between f and Φpf if word embeddings Φ satisfy a certain Gaussian-like property, which we show implies

that tasks solvable linearly with Φpf are also solvable linearly using f .

Assumption 5.4.4. There exists a symmetric positive semidefinite matrix A ∈ Rd×d, a vector b ∈ Rd and a

constant c ∈ R such that log(Zθ) = 1
2θ

⊤Aθ + θ⊤b + c for any θ ∈ Rd.

If word embeddings were distributed as Gaussians, i.e. V columns of Φ are sampled fromN (µ,Σ) independently,

it is not hard to show (Lemma 5.12.1) that log(Zθ) ≈ 1
2θ

⊤Σθ + θ⊤µ+ log(V). While some papers [Arora

et al., 2016, Mu and Viswanath, 2018] have noted that word embeddings are fairly random-like in the bulk to

argue that the log partition function is constant for ∥θ∥2 = 1, our quadratic assumption is a bit stronger.

However, empirically we find the fit to be very good, as evident in Figure 5.1. Under the above assumption,

we can show a linear relation between f and Φpf .

Lemma 5.4.5. Under Assumption 5.4.4, feature map f satisfies Φpf (s) = Af(s) + b,∀s ∈ S.

Corollary 5.4.6. Under same setting as Lemma 5.4.5 and Theorem 5.4.3, ℓT (f) ≤ τ +O(B
√
ϵ).

This shows that f itself is good for natural classification tasks. However, in practice, the linearity between f

and Φpf only weakly holds on features from pretrained GPT-2 [Radford et al., 2018]. The fractional residual

norm of the best linear fit, i.e. r =
E

s∼p
∥Φpf (s)−Af(s)−b∥2

E
s∼p

∥Φpf (s)∥2 , measured for different distributions (r = 0 is perfect

fit) are 0.28 for SST, 0.39 for AG News, and 0.18 for IMDb contexts. This non-trivial linear relationship,

although surprising, might not completely explain the success of f , which usually performs better than Φpf ;

we leave exploring this to future work.

5.5 Extensions

5.5.1 Better handling of distributional shift

The bounds in the previous section use the coefficient γ(pT) to transfer guarantees from pL to pT and we

define a more refined notion of transferability here. The coefficient γ(pT) is independent of the learned model

and assumes a worst case distribution of errors. For the refined coefficient, we first define the error made in

179

Figure 5.1: Learned quadratic function v/s log partition function on various datasets for features computed
from pre-trained GPT-2 to verify Assumption 5.4.4. We also plot the y = x line for reference.

predicted probabilities by a softmax language model f as ∆{pf(s)}(s) = pf(s) − p∗
·|s. For any distribution

p ∈ ∆S , we define uncentered covariance of a function g : S → RD as Σp(g) = Es∼p
[
g(s)g(s)⊤

]
. The refined

transferability coefficient is then defined as

γ(p; Φpf) :=
(∥∥∥ΣpL(Φ∆{pf(s)})−

1
2 Σp(Φ∆{pf(s)})ΣpL(Φ∆{pf(s)})−

1
2

∥∥∥
2

)−1

We state the refined result for softmax language models; detailed results are deferred to Section 5.9.

Theorem 5.5.1 (Simplified). In the same setting as Theorem 5.4.3, ℓT (Φpf) ≤ τ +
√

2B2ϵ
γ(pT ;Φpf)

It is easy show that γ(pT ; Φpf) ≥ γ(pT), so this is indeed a stronger bound. The coefficient γ(pT ; Φpf)

measures how average error on f on pL can propagate to pT . This can potentially be much smaller than

γ(pT) due to some inductive biases of f . For instance, if errors made by the model are random-like, i.e.

∆{pf(s)}(s) ∼ ρ, independently of s, then ΣpL(Φ∆{pf(s)}) ≈ Σp(Φ∆{pf(s)}) ≈ Eη∼ρ[ηη⊤], making γ(p; Φpf) ≈ 1.

Independence prevents accumulation of language modeling error on contexts from pT , bypassing the worst

case transfer of γ(pT).

5.5.2 Quad: A new objective function

In Definition 5.3.2 we discuss how low dimensional softmax language models learn a linear projection of p∗
·|s,

only solving tasks that lie in the row span of word embeddings Φ. Although Φ defines tasks that language

model features can solve, the standard cross-entropy objective does not lend a simple closed form expression

180

for optimal Φ. This motivates the construction of our Quad objective, that has two nice properties: (1) the

optimal feature map f∗ is a linear function of p∗
·|s and thus can solve some natural tasks, and (2) the optimal

Φ∗ has an intuitively meaningful closed-form solution.

ℓquad(f,Φ) = E
s∼pL

[
E

w∼p∗·|s
[−f(s)⊤ϕw] +

1

2
∥Φ⊤f(s)∥2

]
(5.6)

The Quad objective is very similar to the cross-entropy objective from Equation (5.2), with the log partition

function replaced by a quadratic function, inspired in part by Assumption 5.4.4. We can derive the optimal

solution Φ∗ that depends on the eigen-decomposition of a substitutability matrix.

Definition 5.5.2. The substitutability matrix is defined to be Ω∗ := E
s∼pL

[
p∗
·|s p∗

·|s
⊤
]
∈ RV×V . If Ω∗ =

USU⊤ is the eigendecomposition, then Ud ∈ RV×d is matrix of top d eigenvectors of Ω∗.

The matrix Ω∗ captures substitutability between pairs of words. Words w and w′ are substitutable if they

have identical conditional probabilities for every context s ∈ S and thus can replace occurrences of each other

while still providing meaningful completions. By definition, these words satisfy Ω∗[w] = Ω∗[w′]. Such pairs

of words were called “free variants” in the work on distributional semantics [Harris, 1954], and capture the

notion of synonyms; more in Section 5.11.2.

Theorem 5.5.3. Let f∗,Φ∗ = arg minf,Φ ℓquad(f,Φ). Then Φ∗ = BU⊤
d , for full rank B ∈ Rd×d. Also, for

a classification task T that is (τ,B)-natural w.r.t. Φ∗, we have ℓT (f∗) ≤ τ .

Thus f∗ excels on natural tasks w.r.t. Φ∗, which in turn, is the best d-dimensional projection of Ω∗. Thus

words w,w′ ∈ W that are synonyms (hence substitutable) will satisfy ϕ∗w = ϕ∗w′ , fulfilling the desired property

for word embeddings discussed in Definition 5.3.2.

We train using the Quad objective and compare its performance to a similarly trained GPT-2 language model.

The results in Table 5.3 suggest that Quad performs comparably to Φpf from the cross-entropy objective,

which fits our theory since both are linear functions of p∗
·|s. Section 5.13.3 has more details and experiments.

The goal of testing Quad is to demonstrate that theoretical insights can aid the design of provably effective

algorithms. Refer to Section 5.10 for more details on Quad.

181

Table 5.1: Accuracy (%) on k-way linear classification using fixed GPT-2 features. Good performance of
features f(s), conditional mean features Φpf (s) and meaningful subset of ≤ 30 (and ≤ 2k) coordinates of
pf(s) verify the sentence completion reformulation and main results. The numbers right below the features
denote dimensionality of the features. An asterisk indicates that we added a task-specific prompt. Other
baselines are fine-tuning (FT, Section 5.13.2) and random projection of pf(s) (rand. proj.). Sentence version
of SST (train/test: 6.9K/1.8K) is used.

Task k
f(s)
768

Φpf (s)
768

pf(s) (subset)
≤ 30

pf(s) (class words)
≤ 2k

pf(s) (rand. proj.)
768

FT

SST 2 87.5 83.3 82.6 78.7 67.5 91.4
SST* 2 89.4 87.3 85.4 79.1 76.4 92.3
SST fine 5 49.2 43.5 44.0 39.2 23.1 50.2
SST fine* 5 49.4 48.6 47.6 40.3 28.8 53.5
AG 4 90.7 84.6 83.8 75.4 58.5 94.5
AG* 4 91.1 88.2 86.1 75.1 63.7 94.4

5.6 Experiments

We use experiments to verify (1) linear classification on fixed language model features does comparably to

fine-tuning the features, (2) sentence completion reformulation (Section 5.3.1), i.e. tasks can be solved using

probabilities for indicative words, (3) conditional mean features are effective.

Tasks using linear function of p∗
·|s: We validate our claims from Section 5.3 that classification tasks can

be solved by linear functions of p∗
·|s. Since p∗

·|s is never available, we instead use the output features f(s) and

probabilities p·|s := pf(s) from a small pretrained GPT-2 model [Radford et al., 2019]. Table 5.1 demonstrates

that on binary and fine-grained Stanford Sentiment Treebank (SST) [Socher et al., 2013] and AG News

[Zhang et al., 2015] tasks, probabilities pf(s) of just 30 or so task-relevant tokens (see Section 5.13.1) can solve

the tasks. Even just one/two token per class (“class words”) yields non-trivial performance. Furthermore, we

validate the sentence completion reformulation in Section 5.3.1 by using the probabilities pf(s) after adding a

task specific prompt and consistently observing improved performance, including for fine-tuning (FT) with

small datasets.

Φpf and f are good features: We first note that linear classification over fixed features f(s) from the

pretrained model performs comparably to the FT baseline. We further validate Theorem 5.4.3 by verifying

that the conditional mean features Φpf (s) also linearly solve downstream tasks fairly well. This performance

is comparable to, but always worse than f(s), as seen in columns 3 and 4 of Table Table 5.1. We again find

that adding a prompt improves performance. Note that a random projection of pf(s) to same dimensions

as Φpf (s) has very poor performance. Section 5.12.5 has results for a wider range of classification tasks.

182

Evidence for Assumption 5.4.4 is provided by learning a quadratic function to fit the log partition function of

features from pretrained GPT-2 model (see Section 5.13.4). Figure 5.1 demonstrates that the fit holds for its

training and unseen data (e.g., WebText [Radford et al., 2019]).

5.7 Conclusions and future work

We provide intuitive and mathematical explanations for the success of language model features on classification

tasks by reformulating them as sentence completion problems. This reformulation is formalized as natural

tasks: those that can be solved linearly using the conditional probability distribution p∗
·|s. Insights from

our analysis help design the Quad objective that provably learns good features for these natural tasks. We

hope our analysis will inspire other mathematical insights into language models. While Section 5.4.3 argues

linearity between conditional mean features Φpf and f , it is insufficient to explain the observed superiority of

f over Φpf . We leave exploring this limitation of our analysis to future work. Guarantees for softmax models

are for natural tasks w.r.t. Φ, thus knowing the optimal d-dimensional word embeddings Φ∗ for ℓxent(f,Φ) is

also important. Other meaningful directions include providing guarantees for other successful models like

BERT [Devlin et al., 2019] and more diverse downstream tasks. Although we would like to show stronger

guarantees by exploiting model and algorithmic inductive biases, as well as study the setting of fine-tuning

language model features, lack of a good theory of deep learning is the current bottleneck.

Acknowledgments: Sanjeev Arora, Sadhika Malladi and Nikunj Saunshi are supported by NSF, ONR,

Simons Foundation, Amazon Research, DARPA and SRC.

183

5.8 Overview

Section 5.9 is a more detailed version of Section 5.5.1 and Section 5.10 is a detailed version of Section 5.5.2.

Section 5.11.1 has a discussion about why natural tasks are a reasonable formalization for the sentence

completion reformulation and also interpretations for τ and B in the definition of natural tasks. Section 5.11.2

discusses desirable properties of word embeddings Φ like capturing synonym structure in words. Section 5.12

contains proofs for all results, including proof sketches for the main results in Section 5.12.1. Lemma 5.12.4

is the softmax variant of Pinsker’s inequality that we prove and use for our main results.

Section 5.13 contains many more experimental findings that consolidate many of our theoretical results.

Section 5.13.1 provides the information about subsets of words used for results in Table 5.1 and also additional

experiments to test the performance of pretrained language model embeddings f on more downstream tasks

and also verifying that conditional mean embeddings Φpf do well on these tasks. In Section 5.13.3, we present

additional results for Quad objective trained on a larger corpus and tested on SST. Section 5.13.4 provides

additional details on how A, b and c from Assumption 5.4.4 are learned and also further verification of the

assumption on more datasets. Finally, Section 5.13.5 experimentally verifies the O(
√
ϵ) dependence from

Theorem 5.4.3.

5.9 More on better handling of distributional shift

While the bounds above used γ(pT) to transfer from the distribution pL to pT , we define a more refined

notion of transferability here. While γ(pT) only depends on pL and pT , the more refined notions depend also

on the learned language model, thus potentially exploiting some inductive biases. We first define the notion

of error made in the predicted probabilities by any predictor p·|s as ∆{p·|s}(s) = p·|s − p∗
·|s. Thus for any

softmax language model f we have ∆{pf(s)}(s) = pf(s) − p∗
·|s. For any distribution p ∈ ∆S , we define the

covariance5 of a function g : S → RD as Σp(g) = E
s∼p

[
g(s)g(s)⊤

]
. We define 3 coefficients for the results to

follow

Definition 5.9.1. For any distribution p ∈ ∆S, we define the following

γ(p; {p·|s}) :=
(∥∥∥ΣpL(∆{p·|s})−

1
2 Σp(∆{p·|s})ΣpL(∆{p·|s})−

1
2

∥∥∥
2

)−1

(5.7)

γΦ(p; {p·|s}) :=
(∥∥∥ΣpL(Φ∆{p·|s})−

1
2 Σp(Φ∆{p·|s})ΣpL(Φ∆{p·|s})−

1
2

∥∥∥
2

)−1

(5.8)

5This is not exactly the covariance since the mean is not subtracted, all results hold even for the usual covariance.

184

γ(p; Φpf) := γΦ(p; {pf(s)}) (5.9)

We notice that Σp(∆{p·|s}) = E
s∼p

[
(p·|s − p∗

·|s)(p·|s − p∗
·|s)

⊤
]
, Σp(Φ∆{p·|s}) = ΦΣp(∆{p·|s})Φ⊤. We are now

ready to state the most general results.

Theorem 5.9.2 (Strengthened Theorem 5.4.1). Let {p·|s} be a language model that is ϵ-optimal, i.e.

ℓxent({p·|s})− ℓ∗xent ≤ ϵ for some ϵ > 0. For a classification task T that is (τ,B)-natural, we have

ℓT
(
{p·|s}

)
≤ τ +

√
2B2ϵ

γ(pT ; {p·|s})

For a classification task T that is (τ,B)-natural w.r.t. Φ, we have

ℓT
(
{p·|s}

)
≤ ℓT

(
{Φp·|s}

)
≤ τ +

√
2B2ϵ

γΦ(pT ; {p·|s})

Theorem 5.5.1 (Strengthened Theorem 5.4.3). For a fixed Φ, let f be features from an ϵ-optimal d-

dimensional softmax language model, i.e. ℓxent(f,Φ)−ℓ∗xent(Φ) ≤ ϵ, where ℓ∗xent(Φ) is defined in Equation (5.4).

For a classification task T that is (τ,B)-natural w.r.t. Φ, we have

ℓT
(
{pf(s)}

)
≤ ℓT (Φpf) ≤ τ +

√
2B2ϵ

γ(pT ; Φpf)

Discussions: It is not hard to show that the coefficients satisfy γΦ(pT ; {p·|s}) ≥ γ(pT ; {p·|s}) ≥ γ(pT) and

γ(pT ; Φpf) ≥ γ(pT), thus showing that these results are strictly stronger than the ones from the previous

section. The transferability coefficient is a measure of how guarantees on pL using a language model can

be transferred to another distribution of contexts and it only depends on the distribution of contexts and

not the labels. Unlike γ(pT), the coefficients in Definition 5.9.1 depend on the learned models, either

{p·|s} or {pf(s)}, and can be potentially much smaller due to the inductive bias of the learned models.

For instance, if errors made by the model are random-like, i.e. ∆{p·|s}(s) ∼ ρ, independently of s, then

ΣpL(∆{p·|s}) ≈ Σp(∆{p·|s}) ≈ Eη∼ρ[ηη⊤], making γ(p; {p·|s}) ≈ 1. Independence prevents language modeling

error from accumulating on contexts from pT , bypassing the worst case transfer of γ(pT).

185

5.10 More on Quad

In Definition 5.3.2 we discuss how low dimensional softmax language models learn a linear projection of p∗
·|s,

only solving tasks that lie in the row span of word embeddings Φ. Although Φ defines tasks that language

model features can solve, the standard cross-entropy objective does not lend a simple closed form expression

for optimal Φ. This motivates the construction of our Quad objective, that has two nice properties: (1) the

optimal feature map f∗ is a linear function of p∗
·|s and thus can solve some natural tasks, and (2) the optimal

Φ∗ has an intuitively meaningful closed-form solution.

ℓquad,s(θ,Φ) = E
w∼p∗·|s

[−θ⊤ϕw] +
1

2
∥Φ⊤θ∥2 = −θ⊤Φp∗

·|s +
1

2
∥Φ⊤θ∥2 (5.10)

ℓquad(f,Φ) = E
s∼pL

[ℓquad,s(f(s),Φ)] (5.11)

The Quad objective is very similar to the cross-entropy objective from Equation (5.2), with the log partition

function replaced by a quadratic function, inspired in part by Assumption 5.4.4. We can derive the optimal

solution Φ∗ that depends on the eigen-decomposition of a substitutability matrix.

Definition 5.5.2. The substitutability matrix is defined to be Ω∗ := E
s∼pL

[
p∗
·|s p∗

·|s
⊤
]
∈ RV×V . If Ω∗ =

USU⊤ is the eigendecomposition, then Ud ∈ RV×d is matrix of top d eigenvectors of Ω∗.

The matrix Ω∗ captures substitutability between pairs of words. Words w and w′ are substitutable if they

have identical conditional probabilities for every context s ∈ S and thus can replace occurrences of each other

while still providing meaningful completions. By definition, these words satisfy Ω∗[w] = Ω∗[w′]. Such pairs of

words were called “free variants” in the work on distributional semantics [Harris, 1954], and capture the notion

of synonyms in the distributional hypothesis. We now derive expressions for the optimal solution of the Quad

objective described in Equation (5.11). The proof of all results from this section are in Section 5.12.5.

Theorem 5.10.1. The optimal solution f∗,Φ∗ = arg minf,Φ ℓquad(f,Φ) satisfies

Φ∗ = BU⊤
d , for full rank B ∈ Rd×d

f∗(s) = (Φ∗Φ∗⊤)−
1/2Φ∗p∗

·|s = CU⊤
d p∗

·|s, for full rank C ∈ Rd×d

If Φ is fixed, then the optimal solution is f∗(s) = (ΦΦ⊤)−1/2Φp∗
·|s.

Theorem 5.5.3. Let f∗,Φ∗ = arg minf,Φ ℓquad(f,Φ). Then Φ∗ = BU⊤
d , for full rank B ∈ Rd×d. Also, for

186

a classification task T that is (τ,B)-natural w.r.t. Φ∗, we have ℓT (f∗) ≤ τ .

Thus f∗ excels on natural tasks w.r.t. Φ∗, which in turn, is the best d-dimensional projection of Ω∗. Thus

words w,w′ ∈ W that are synonyms (hence substitutable) will satisfy ϕ∗w = ϕ∗w′ , fulfilling the desired property

for word embeddings discussed in Definition 5.3.2. We train using the Quad objective and compare its

performance to a similarly trained language model, finding Quad to be reasonably effective. The goal of

testing Quad is not to obtain state-of-the-art results, but to demonstrate that theoretical insights can aid the

design of provably effective algorithms.

5.11 More on natural tasks

The discussions in this section may not be formal and precise in places, they are meant to provide more

intuition for some of the definitions and results.

5.11.1 Sentence completion reformulation ≡ natural task

We provide informal justification for why the sentence completion reformulation can be formalized as being

able to solve using a linear classifier over p∗
·|s ∈ RV . The analysis will also end up providing some intuitions

for τ and B in Definition 5.3.1 and Theorem 5.4.1. In particular, we will show that a task that is amenable

to the sentence completion reformulation will be (τ,B)-natural, with τ = O(Bayes-error(T)), i.e. τ is small

if the Bayes error for the task error, and B = O(α(Windicative)
−1) is inversely proportional to the probability

mass of the set of indicative words for the task. This is formalized in Proposition 5.11.2.

Linear classifier over p∗
·|s

Consider a binary classification task T and that can be solved with a sentence completion reformulation

after adding a prompt as in Section 5.3.1, for e.g. sentiment classification can be solved by adding a prompt

“This movie is” at the end of every movie review and use the completions to solve the task. Recall that pT is

the distribution over S × {±1} for the task T . We abuse notation and use pT to denote the distribution

over inputs where a prompt is added to each to input, for e.g. “I loved the movie.” is transformed to “I

loved the movie. This movie is”. For any s ∼ pT , let pT (y = 1|s) and pT (y = −1|s) denote the conditional

probabilities of the sentiment of review s (with an added prompt) being positive and negative respectively.

187

By law of total probability we can write this conditional probability as

pT (y = 1|s) =
∑
w∈W

Pr(y = 1|(s, w)) Pr(w|s) =
∑
w∈W

Pr(y = 1|(s, w)) p∗·|s(w) (5.12)

For any task T we can roughly partition the vocabulary set W into the following

Indicative words Windicative: w can be an indicative completion for the task, like “good”, “boring”, “trash”

etc, after a movie review like s =“I loved the movie. This movie is”. In this case the sentence completion

reformulation can be interpreted as the following: the completion w after a review s is sufficient to determine

the sentiment of the review, i.e. we do not need to know the content of the review s to predict the label if we

know the completion w. This can be formalized as Pr(y = 1|(s, w)) ≈ P (y = 1|w) for some fixed distribution

P for indicative completions w.

Irrelevant words Wirrelevant: w can be an irrelevant completion for the task, like “a”, “very”, “not”. In

this case the completions, on the other hand, do not reveal anything more about the sentiment for the review

than s itself, i.e. Pr(y = 1|(s, w)) ≈ pT (y = 1|s) for irrelevant completions w.

Thus from Equation (5.12) we get

pT (y = 1|s) =
∑

w∈Windicative

Pr(y = 1|(s, w)) p∗·|s(w) +
∑

w∈Wirrelevant

Pr(y = 1|(s, w)) p∗·|s(w)

≈
∑

w∈Windicative

P (y = 1|w) p∗·|s(w) +
∑

w∈Wirrelevant

pT (y = 1|s) p∗·|s(w)

=
∑

w∈Windicative

v1(w) p∗·|s(w) + pT (y = 1|s)
∑

w∈Wirrelevant

p∗·|s(w)

= v⊤
1 p

∗
·|s + pT (y = 1|s)p∗·|s(Wirrelevant)

where v1 ∈ RV is defined as v1(w) = P (y = 1|w) for w ∈ Windicative and v1(w) = 0 for w ∈ Wirrelevant.

Similarly we can define v−1 ∈ RV with v−1(w) = P (y = −1|w) for w ∈ Windicative, v−1(w) = 0 for

w ∈ Wirrelevant. From the earlier calculation, and a similar one for y = −1, we get

pT (y = b|s) ≈ 1

1− p∗·|s(Wirrelevant)
v⊤
b p

∗
·|s =

1

p∗·|s(Windicative)
v⊤
b p

∗
·|s, for b ∈ {±1}

If we assume p∗·|s(Windicative) ≈ α(Windicative) is roughly the same for all s, i.e. probability mass of indicative

188

words following a modified review is approximately the same, then we get

pT (y = 1|s)− pT (y = −1|s) ≈ v⊤
T p

∗
·|s , where vT =

1

α(Windicative)
(v1 − v−1) (5.13)

Thus we can approximately express the difference in conditional probabilities of the 2 classes as a linear

function of p∗
·|s. While it is intuitively clear why knowing pT (y = 1|s)− pT (y = −1|s) is useful for solving

the task, we show precisely why in the next part.

Interpretation for τ and B

Based on the above discussed, we will show that the task T from earlier is (τ,B)-natural according to the

Definition 5.3.1 and will also give us an interpretation for τ and B. First we show that the following predictor

from Equation (5.13) is effective for task T

gT (s) = pT (y = 1|s)− pT (y = −1|s) ≈ v⊤
T p

∗
·|s (5.14)

We reuse the notation from Equation (5.3) and define the task loss for any predictor g : S → R as

ℓT (g) = E(s,y)∼pT [ℓ(g(s), y)] (5.15)

Furthermore let Bayes-error(T) := infg:S→R E(s,y)∼pT [1{g(s) ̸= y}] denote the Bayes error of the task T , i.e.

the optimal 0− 1 error achievable on the task.

Proposition 5.11.1. For any task T and for the hinge loss ℓ, ℓT (gT) ≤ 4 Bayes-error(T), where gT (s) =

pT (y = 1|s)− pT (y = −1|s).

Thus if a task is easily solvable, i.e. has small Bayes error, then it will be solvable by the predictor gT (s).

Since we argued above that sentence reformulation implies that gT (s) is a linear function of p∗
·|s, we can now

show that T is a natural task as formalized in Definition 5.3.1.

Proposition 5.11.2 (Informal). Task T that can be reformulated as a sentence completion task (described

above) is a (τ,B)-natural task w.r.t. the hinge loss, with the follow parameters

τ ≤ 4 Bayes-error(T) and B = α(W indicative)
−1

189

Here Bayes-error(T) is the Bayes error of task T and α(Windicative) is the total mass of the indicative words

for the task.

If the task T can be reformulated as sentence completion, then T is (τ,B)-natural where

• τ is small if the task is unambiguous, i.e. it has small Bayes error

• B is small if the probability mass of the set of indicative words Windicative is large, i.e. the task depends

on a large set of frequent words

Thus the upper bound in Theorem 5.4.1 is smaller if the task can be reformulated as sentence completion

task with a large and frequent set of completions, and we can ever hope to solve it well (Bayes error is small).

The proofs for the above propositions are in Section 5.11.1.

5.11.2 Nice properties of word embeddings Φ

We argue here that if the word embeddings Φ satisfy certain nice properties, then (τ,B)-natural tasks of

interest will be (τ ′, B′)-natural w.r.t. Φ, where we will provide informal quantifications for the nice properties

and tasks of interest that lead to a small value for τ ′ and B′. The nice property will be related to Φ capturing

the semantic meaning (synonym structure) of words and tasks of interest will be those that try to distinguish

word completion (in the sentence completion reformulation) with very different meanings, i.e. tries to

distinguish more coarse-grained semantic notions rather than very fine-grained ones. Note that the results

here are informal and qualitative, rather than quantitative.

Consider a task T that is (τ,B)-natural task and let v∗ ∈ RV be the classifier such that ℓT ({p∗
·|s},v

∗) ≤ τ

and ∥v∗∥∞ ≤ B. We want to find properties of Φ and v∗ that will make T to be (τ ′, B′)-natural w.r.t. Φ

such that τ ′ and B′ are not too large.6

We will show that T is (τ ′, B′)-natural w.r.t. Φ by finding a classifier v such that v = Φ⊤λ ∈ RV , ∥v∥∞ ≤ B′

and ℓT ({p∗
·|s},v) ≤ τ ′. First we define PΦ := Φ†Φ ∈ RV×V to be the projection matrix for the row-span of Φ

and P⊥
Φ := IV − PΦ to be orthogonal projection matrix. We will show that the classifier v = PΦv

∗ suffices

for our case, under some intuitive conditions on v∗ and Φ.

6Note that the converse is trivially true, i.e. a (τ, B)-natural task w.r.t. Φ is also (τ, B)-natural.

190

To compute B′, we first look at the ℓ∞ norm of v = PΦv
∗

B′ = ∥v∥∞ = ∥PΦv
∗∥∞ = ∥v∗ − P⊥

Φ v∗∥∞ ≤ ∥v∗∥∞ + ∥P⊥
Φ v∗∥∞ ≤ B + ∥P⊥

Φ v∗∥2

To find the upper bound τ ′, we upper bound the classification loss of v = PΦv
∗. We first define the

substitutability matrix Ω∗
p = E

s∼p

[
p∗
·|sp

∗
·|s

⊤
]
, similar to the one in Definition 5.5.2. Then

ℓT ({p∗
·|s},v) = E

(s,y)∼pT

[
ℓ(v⊤p∗

·|s, y)
]

= E
(s,y)∼pT

[
ℓ((PΦv

∗)⊤p∗
·|s, y)

]
≤(a) E

(s,y)∼pT

[
ℓ(v∗⊤p∗

·|s, y)
]

+ E
s∼pT

[|(v∗ − PΦv
∗)⊤p∗

·|s|]

= ℓT ({p∗
·|s},v

∗) + E
s∼pT

[
|v∗⊤P⊥

Φ p∗
·|s|
]

≤(b) τ +

√
E

s∼pT

[
(v∗⊤P⊥

Φ p∗
·|s)

2
]

= τ +

√
E

s∼pT

[
v∗⊤P⊥

Φ p∗
·|sp

∗
·|s

⊤P⊥
Φ v∗

]
=(c) τ +

√
v∗⊤P⊥

Φ Ω∗
pT P

⊥
Φ v∗ ≤(d) τ + ∥P⊥

Φ v∗∥2
√∥∥P⊥

Φ Ω∗
pT P

⊥
Φ

∥∥
2

where (a) follows from 1-Lipschitz property of ℓ, (b) from Jensen’s inequality and that ℓT ({p∗
·|s},v

∗) ≤ τ , (c)

from the definition of substitutability matrix Ω∗
pT and (d) by definition of spectral norm of a symmetric PSD

matrix.

Thus we have shown that T is (τ ′, B′)-natural w.r.t. Φ, where

τ ′ = τ + ∥P⊥
Φ v∗∥2

√∥∥P⊥
Φ Ω∗

pT P
⊥
Φ

∥∥
2
, B′ = B + ∥P⊥

Φ v∗∥2 (5.16)

We will now show that if Φ captures the notion of synonyms, then
∥∥P⊥

Φ Ω∗
pT P

⊥
Φ

∥∥
2

will be small leading to τ ′

being small. Furthermore we also shed some light on what it means for ∥P⊥
Φ v∗∥2 to be small, which will in

turn make B′ small and τ ′ smaller. We do so with the following arguments, 1) Ω∗
pT captures semantic meaning

of words and thus its top eigen-directions will capture more dominant semantic concepts, 2) if Φ captures

the “top-d” directions of meaning, i.e. the top-d eigen-directions of Ω∗
pT , then

∥∥P⊥
Φ Ω∗

pT P
⊥
Φ

∥∥
2

= O(1/d), 3)

if additionally v∗ cares about the “top-d” directions of meaning, i.e. top-d eigen-directions of Ω∗
pT then

∥P⊥
Φ v∗∥2 will be small. We expand on these points below

1. Substitutability matrix (Ω∗
pT) captures semantic meaning: We use a similar argument to the one

in Section 5.5.2 right after Definition 5.5.2 that is based on distributional semantics [Harris, 1954]. Harris

191

[1954] posits that meaning for elements (words) can be derived from the environments (contexts) in which

they occur. Thus Harris [1954] argues that words that occur in almost identical set of contexts have the

same meaning, i.e. are synonyms. On the other hand, if two words share some contexts but not all, then

they have different meanings and the amount of difference in meaning roughly corresponds to amount of

difference in contexts. In our setting, the similarity of words w and w′ can then be determined by the

probabilities assigned to them by different contexts s. In particular, if p∗
·|s(w) = p∗

·|s(w
′) for all or most

s ∈ supp(pT), then w and w′ have essentially the same meaning w.r.t. the distribution of contexts pT and

the closer [p∗
·|s(w)]s∈supp(pT) and [p∗

·|s(w
′)]s∈supp(pT) are, the closer the meaning of w and w′ are. For the

substitutability matrix Ω∗
pT = E

s∼pT
[p∗

·|sp
∗
·|s

⊤] ∈ RV×V , it is not hard to show that Ω∗
pT (w) = Ω∗

pT (w′) is

equivalent to p∗
·|s(w) = p∗

·|s(w
′) ∀s ∼ pT , where Ω∗

pT (w) is the row of Ω∗
pT corresponding to word w. To show

this, we can define βw ∈ R|supp(pT)| to be an embedding of w that looks like βw = [p∗
·|s(w)

√
pT (s)]s∈supp(pT). It

is easy to see that β⊤
w1

βw2 = E
s∼pT

[
p∗
·|s(w1)p∗

·|s(w2)
]

= Ω∗
pT (w1, w2). Thus βw = βw′ =⇒ Ω∗

pT (w) = Ω∗
pT (w′)

is straightforward to see. For the converse,

Ω∗
pT (w) = Ω∗

pT (w′) =⇒ Ω∗
pT (w,w) = Ω∗

pT (w′, w) = Ω∗
pT (w,w′) = Ω∗

pT (w′, w′) (5.17)

=⇒ β⊤
wβw = β⊤

wβw′ = β⊤
w′βw′ =⇒ βw = βw′ (5.18)

Thus Ω∗
pT indeed does capture the synonyms structure between words, and the top eigen-directions of it

capture the most significant “semantic meaning” directions.

2. Φ has nice properties: if Φ roughly respects this synonym structure by aligning with the top-d

eigen-directions of Ω∗
pT , we have

∥∥P⊥
Φ Ω∗

pT P
⊥
Φ

∥∥
2
≤ λd+1(Ω∗

pT) ≤ 1

d+ 1

d+1∑
i=1

λi(Ω
∗
pT) ≤ 1

d+ 1
tr(Ω∗

pT) (5.19)

≤ 1

d+ 1
E

s∼pT
tr(p∗

·|sp
∗
·|s

⊤) ≤ 1

d+ 1
(5.20)

From Equation (5.16), we then have τ ′ ≤ τ +
∥P⊥

Φ v∗∥2√
d

3. Tasks of interest: It is more likely for a classifier v∗ to separate words with big differences in meaning

rather than small differences. For e.g., it is more likely for a task to separate word completions “good” and

“bad” rather than “good” and “nice”. Since top eigen-directions of Ω∗
pT capture more dominant semantic

192

meanings, this could correspond to v∗ aligning with the top eigen-directions of Ω∗
pT . In combination with the

above property about Φ, this could suggest that ∥P⊥
Φ v∗∥2 is small, thus leading to τ ′ and B′ being small.

Note that they above arguments are informal and qualitative, and we leave exploring desirable properties of

Φ more formally to future work.

5.11.3 Proofs for Section 5.11.1

Proposition 5.11.1. Let pb(s) = pT (y = b|s) for b ∈ {±1}, pmin(s) = minb∈{±1} pb(s), pmax(s) = maxb∈{±1} pb(s)

and g∗(s) = arg maxb∈{±1} pb(s) denote the Bayes optimal predictor. We first notice that there is a simple

well-known closed form expression for the Bayes risk

Bayes-error(T) = E
(s,y)∼pT

[1 {g∗(s) ̸= y}]

= E
(s,y)∼pT

[
1

{
arg max
b∈{±1}

pb(s) ̸= y

}]
= E
s∼pT

[pmin(s)]

We now analyze the hinge loss of the predictor gpT defined in Equation (5.14). Note that since gpT (s) ≤ 1,

the hinge loss ℓ(gpT (s), y) = (1− ygpT (s))+ = 1− ygpT (s) for every s, y. Thus the total loss is

gpT (s) = E
(s,y)∼pT

[(1− ygpT (s))+] = E
(s,y)∼pT

[(1− ygpT (s))]

=(a) E
s∼pT

[p1(s) (1− gpT (s)) + p−1(s) (1 + gpT (s))] = E
s∼pT

[1− (p1(s)− p−1(s))gpT (s)]

=(b) E
s∼pT

[
1− (p1(s)− p−1(s))2

]
= E
s∼pT

[
(p1(s) + p−1(s))2 − (p1(s)− p−1(s))2

]
= E
s∼pT

[4p1(s)p−1(s)] = 4 E
s∼pT

[pmin(s)pmax(s)]

≤(c) 4 E
s∼pT

[pmin(s)] = 4 Bayes-error(T)

where (a) follows by splitting the expectation over y|s, (b) follows from the definition of gpT (s) in Equa-

tion (5.14) and (c) follows from pmax(s) ≤ 1. This completes the proof.

Proposition 5.11.2. Let B = α(Windicative)
−1. We first note the following using the definition of v from

193

Equation (5.13).

∥vT ∥∞ = α(Windicative)
−1 max

w∈W
|v1(w)− v−1(w)| = B max

w∈W
|P (y = 1|w)− P (y = −1|w)| ≤ B (5.21)

To find the value of τ that makes the task (τ,B)-natural (Definition 5.3.1), we observe the following

min
v∈RV ,∥v∥≤B

ℓT ({p∗
·|s},v) =(a) ℓT ({p∗

·|s},vT) = E
(s,y)∼pT

[ℓ(v⊤
T p

∗
·|s, y)]

=(b) E
(s,y)∼pT

[ℓ(gT (s), y)] = ℓT (gT)

≤(c) 4 Bayes-error(T)

where (a) follows from the calculation in Equation (5.21), (b) follows from Equation (5.13) and (c) follows

from Proposition 5.11.1.

5.12 Omitted proofs

5.12.1 Proof sketch

We first present a sketch of the arguments that help us show our main results, Theorems 5.4.1 and 5.4.3. The

subsections after the next one contain the full proofs for strengthened versions of these results.

Proof sketch for arbitrary language models: Theorem 5.4.1

Here we want to show guarantees for features {p·|s} on a (τ,B)-natural task T . From the definition of natural

tasks, we know

∃v∗ ∈ RV , ∥v∗∥∞ ≤ B s.t. ℓT ({p∗
·|s},v

∗) ≤ τ (5.22)

We wish to upper bound the classification error ℓT ({p·|s}) and do so using the following sequence of

inequalities.

ℓT ({p·|s})− τ = inf
v∈RV

ℓT ({p·|s},v)− τ ≤ ℓT ({p·|s},v∗)− ℓT ({p∗
·|s},v

∗)

194

=
ℓT ({p·|s},v∗)− ℓT ({p∗

·|s},v
∗)√

E
s∼pT

[(v∗⊤(p·|s − p∗
·|s))

2]
·

√√√√√ E
s∼pT

[(v∗⊤(p·|s − p∗
·|s))

2]

E
s∼pL

[(v∗⊤(p·|s − p∗
·|s))

2]
·
√

E
s∼pL

[(v∗⊤(p·|s − p∗
·|s))

2]

=
ℓT ({p·|s},v∗)− ℓT ({p∗

·|s},v
∗)√

v∗⊤ΣpT (∆{p·|s})v∗︸ ︷︷ ︸
α1(v

∗)
Classification loss → error covariance on pT
Use Lipschitzness of ℓ and Jensen’s inequality

·

√√√√v∗⊤ΣpT (∆{p·|s})v∗

v∗⊤ΣpL(∆{p·|s})v∗︸ ︷︷ ︸
α2(v

∗)
Error covariance from pT → pL
Use transferability coefficient

·
√

E
s∼pL

[(v∗⊤(p·|s − p∗
·|s))

2]︸ ︷︷ ︸
α3(v

∗)
Error covariance → cross-entropy loss
Use (modified) Pinsker’s inequality

(5.23)

where Σp(g) := E
s∼p

[g(s)g(s)⊤] is the uncentered covariance of g w.r.t. distribution p ∈ ∆S , as defined

in Section 5.5.1. We upper bound ℓT ({p·|s}) − τ by upper bounding each of α1(v∗),α2(v∗),α3(v∗) as

follows

• Classification loss → prediction error covariance: α1(v∗) is upper bounded by using Lipschitzness

of the loss ℓ used in the definition of ℓT , e.g. hinge loss or logistic loss, and then followed by an application

of Jensen’s inequality

Lemma 5.12.8 =⇒ α1(v) ≤ 1 for all v ∈ RV

• Error covariance from pT → pL: α2(v∗) handles the mismatch in distributions pT and pL over

which the classification loss and cross-entropy losses are measured respectively. It is upper bounded by

the transferability coefficient

Lemma 5.12.10 and Lemma 5.12.9 =⇒ α2(v) ≤
√
γ(pT)−1 for all v ∈ RV

• Error covariance → cross-entropy loss (arbitrary language models): This is arguably the most

important step that connects the error in prediction to the cross-entropy loss. For the arbitrary language

model case, this is proved using Pinsker’s inequality and taking expectation over the distribution pL.

Lemma 5.12.3 =⇒ α3(v) ≤
√

2∥v∥2∞(ℓxent({p·|s})− ℓxent(p∗
·|s)) for all v ∈ RV

Proof sketch for softmax language models: Theorem 5.4.3

Here we want to show guarantees for features Φpf = {Φpf(s)} on a (τ,B)-natural task T w.r.t Φ. From the

definition of natural tasks w.r.t. Φ, we know

∃v∗ = Φ⊤λ ∈ RV , ∥v∗∥∞ ≤ B s.t. ℓT ({p∗
·|s},v

∗) ≤ τ (5.24)

195

Note that the difference here is that v∗ is in the span of Φ rather than an arbitrary vector in RV . We wish to

upper bound the classification error ℓT ({Φpf(s)}) and do so using the following sequence of inequalities.

ℓT ({Φpf(s)})− τ = inf
λ∈Rd

ℓT ({Φpf(s)}, λ)− τ

= inf
v=Φ⊤λ∈RV

ℓT ({pf(s)},v)− τ

≤ ℓT ({pf(s)},v∗)− ℓT ({p∗
·|s},v

∗)

≤ α1(v∗) ·α2(v∗) ·α3(v∗) (5.25)

where the first inequality follows because v∗ is in the span of Φ and second inequality follows from Equa-

tion (5.23). The bounds for α1(v∗) and α2(v∗) are the same as arbitrary language models. The main

difference is the bound on α3(v∗) which will be a stronger bound for softmax models.

• Error covariance → cross-entropy loss (softmax language models): For softmax language

models, we need to prove a modified version of Pinsker’s inequality specifically for softmax models.

This version will show a bound that only works when v∗ is in the span of Φ and if the evaluated model

pf(s) computes softmax using Φ as well.

Lemma 5.12.4 =⇒ α3(v) ≤
√

2∥v∥2∞(ℓxent({pf(s)})− inf
f∗

({pf∗(s)})) ∀v = Φ⊤λ ∈ RV

Thus we suffer the suboptimality of the language model {pf(s)} w.r.t. the best softmax model {pf∗(s)} rather

than the absolute best language model {p∗
·|s}. This is done using the softmax variant of Pinsker’s inequality

in Lemma 5.12.4. We now present the detailed proofs for all results.

5.12.2 Proofs for arbitrary language models

Theorem 5.9.2 (Strengthened Theorem 5.4.1). Let {p·|s} be a language model that is ϵ-optimal, i.e.

ℓxent({p·|s})− ℓ∗xent ≤ ϵ for some ϵ > 0. For a classification task T that is (τ,B)-natural, we have

ℓT
(
{p·|s}

)
≤ τ +

√
2B2ϵ

γ(pT ; {p·|s})

For a classification task T that is (τ,B)-natural w.r.t. Φ, we have

ℓT
(
{p·|s}

)
≤ ℓT

(
{Φp·|s}

)
≤ τ +

√
2B2ϵ

γΦ(pT ; {p·|s})

196

Proof. The proof has two main steps that we summarize by the following two lemmas. The first one upper

bounds the downstream performance on natural tasks with the covariance of errors.

Lemma 5.12.2. For a language model {p·|s}, if T is (τ,B)-natural,

ℓT ({p·|s}) ≤ τ + sup
v∈RV ,∥v∥∞≤B

√
v⊤ΣpL(∆{p·|s})v

γ(pT ; {p·|s})

If T is (τ,B)-natural w.r.t. Φ ∈ Rd×V ,

ℓT ({Φp·|s}) ≤ τ + sup
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
v⊤ΣpL(∆{p·|s})v

γΦ(pT ; {p·|s})

where γ(·) and γΦ(·) are from Definition 5.9.1.

The second lemma upper bounds the covariance of error with the suboptimality of the language model.

Lemma 5.12.6. For a language model {p·|s} and classifier v ∈ RV ,

v⊤ΣpL(∆{p·|s})v ≤ 2∥v∥2∞
(
ℓxent({p·|s})− ℓ∗xent

)
where ΣpL(∆{p·|s}) = E

s∼pL

[
(p·|s − p∗

·|s)(p·|s − p∗
·|s)

⊤
]
as defined in Section 5.9.

We prove both the above lemmas in Section 5.12.6. We first use these to prove the main result.

Combining the two lemmas, we get the following inequality

ℓT ({p·|s}) ≤(a) τ + sup
v∈RV ,∥v∥∞≤B

√
v⊤ΣpL(∆{p·|s})v

γ(pT ; {p·|s})

≤(b) τ + sup
v∈RV ,∥v∥∞≤B

√
2∥v∥2∞

(
ℓxent({p·|s})− ℓ∗xent

)
γ(pT ; {p·|s})

≤(c) τ +

√
2B2ϵ

γ(pT ; {p·|s})

where (a) uses first part of Lemma 5.12.2, (b) uses Lemma 5.12.6 and (c) uses the ϵ-optimality of {p·|s}. This

197

proves the first part of the result. The second part can also be proved similarly.

ℓT ({Φp·|s}) ≤(a) τ + sup
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
v⊤ΣpL(∆{p·|s})v

γΦ(pT ; {p·|s})

≤(b) τ + sup
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
2∥v∥2∞

(
ℓxent({p·|s})− ℓ∗xent

)
γΦ(pT ; {p·|s})

≤ τ + sup
v∈RV ,∥v∥∞≤B

√
2∥v∥2∞

(
ℓxent({p·|s})− ℓ∗xent

)
γΦ(pT ; {p·|s})

≤(c) τ +

√
2B2ϵ

γΦ(pT ; {p·|s})

where (a) uses second part of Lemma 5.12.2, (b) uses Lemma 5.12.6 and (c) uses the ϵ-optimality of {p·|s}.

The proof of the lemmas can be found in Section 5.12.6.

Theorem 5.4.1. Let {p·|s} be a language model that is ϵ-optimal, i.e. ℓxent({p·|s}) − ℓ∗xent ≤ ϵ, for some

ϵ > 0. For a classification task T that is (τ,B)-natural, we have

ℓT
(
{p·|s}

)
≤ τ +

√
2B2ϵ

γ(pT)

Proof. This follows from the first part of Theorem 5.9.2 if we can also show that γ(pT ; {p·|s})−1 ≤ γ(pT)−1.

For that we use the following lemma that we prove in Section 5.12.6.

Lemma 5.12.9. For any g : S → RD and pT ∈ ∆S , we have ∥ΣpL(g)−
1
2 ΣpT (g)ΣpL(g)−

1
2 ∥2 ≤ γ(pT)−1

Instantiating this for g = ∆{p·|s} and using Equation (5.7), we get γ(pT ; {p·|s})−1 ≤ γ(pT)−1, which completes

the proof.

5.12.3 Proofs for softmax language models

Theorem 5.5.1 (Strengthened Theorem 5.4.3). For a fixed Φ, let f be features from an ϵ-optimal d-

dimensional softmax language model, i.e. ℓxent(f,Φ)−ℓ∗xent(Φ) ≤ ϵ, where ℓ∗xent(Φ) is defined in Equation (5.4).

For a classification task T that is (τ,B)-natural w.r.t. Φ, we have

ℓT
(
{pf(s)}

)
≤ ℓT (Φpf) ≤ τ +

√
2B2ϵ

γ(pT ; Φpf)

198

Proof. Instantiating Lemma 5.12.2 for p·|s = pf(s), we get

ℓT ({Φpf(s)}) ≤ τ + sup
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
v⊤ΣpL(∆{pf(s)})v

γΦ(pT ; {pf(s)})

=(a) τ +

√√√√√ sup
∥Φ⊤λ∥∞≤B

λ⊤ΦΣpL(∆{pf(s)})Φ⊤λ

γ(pT ; Φpf)

= τ +

√√√√√ sup
∥Φ⊤λ∥∞≤B

λ⊤ΣpL(Φ∆{pf(s)})λ

γ(pT ; Φpf)

where (a) follows from Equation (5.9) that says γ(pT ; Φpf) = γΦ(pT ; {pf(s)}). We now prove a similar result

for the second term in the following lemma that we prove in Section 5.12.6.

Lemma 5.12.7. For a fixed Φ and a softmax language model with features f and λ ∈ Rd,

λ⊤ΣpL(Φ∆{pf(s)})λ ≤ 2∥Φ⊤λ∥2∞ (ℓxent(f,Φ)− ℓ∗xent(Φ))

where ΣpL(Φ∆{pf(s)}) = E
s∼pL

[
(Φpf(s) − Φp∗

·|s)(Φpf(s) − Φp∗
·|s)

⊤
]
as defined in Section 5.9.

Using Lemma 5.12.7 directly gives us ℓT (Φpf) = ℓT ({Φpf(s)}) ≤ τ +
√

B2(ℓxent(f,Φ)−ℓ∗xent(Φ))
γΦ(pT ;Φpf)

, and the ϵ-

optimality almost completes the proof. The only thing remaining to show is that ℓT ({pf(s)}) ≤ ℓT (Φpf)

which follows from the following sequence.

ℓT ({pf(s)}) = inf
v∈RV ,b∈R

ℓT ({pf(s)},v) ≤ inf
Φ⊤λ∈RV ,b∈R

ℓT ({pf(s)}, (Φ⊤λ, b))

= inf
λ∈Rd,b∈R

ℓT ({Φpf(s)}, (λ, b)) = ℓT (Φpf)

Theorem 5.4.3. For a fixed Φ, let f be features from an ϵ-optimal d-dimensional softmax language model,

i.e. ℓxent(f,Φ)− ℓ∗xent(Φ) ≤ ϵ, where ℓ∗xent(Φ) is defined in Equation (5.4). For a classification task T that is

(τ,B)-natural w.r.t. Φ, we have

ℓT
(
{pf(s)}

)
≤ ℓT (Φpf) ≤ τ +

√
2B2ϵ

γ(pT)

199

Proof. This result follows directly from Theorem 5.5.1, if we can also show that γ(pT ; Φpf)−1 ≤ γ(pT)−1 just

like in the proof of Theorem 5.4.1. For that we again use Lemma 5.12.9 with g = Φ∆{pf(s)} and Equation (5.9)

and this completes the proof.

5.12.4 Proofs for Section 5.4.3

We first show why Assumption 5.4.4 is approximately true when word embeddings are gaussian like.

Lemma 5.12.1. Suppose word embeddings ϕw are independent samples from the distribution N (µ,Σ). Then

for any θ ∈ Rd such that λ2 = θ⊤Σθ = O(1) we have that | log(Zθ) − 1
2θ

⊤Σθ − θ⊤µ − log(V)| ≤ ϵ with

probability 1− δ for ϵ = Õ
(
eλ

2

√
V

)
and δ = 1− exp(−Ω(log2(V))).

Proof. We first note that log(Zθ) = log
(∑

w e
θ⊤ϕw

)
= θ⊤µ+ log

(∑
w e

θ⊤(ϕw−µ)
)

, thus we can simply deal

with the case where ϕw are sampled from N (0,Σ). Furthermore the only random variable of interest is

Xw = θ⊤ϕw which is a gaussian variable N (0, θ⊤Σθ) = N (0, λ2). Thus the problem reduces to showing

that for V samples of Xw ∼ N (0, λ2), log(Z) is concentrated around λ2 + log(V) where Z =
∑
w exp(Xw).

This can be proved similarly to the proof of Lemma 2.1 in Arora et al. [2016]. It is easy to see that

E
Xw∼N (0,λ2)

[exp(Xw)] = eλ
2

. However the variable exp(Xw) is neither sub-gaussian nor sub-exponential and

thus standard inequalities cannot be used directly. We use the same technique as Arora et al. [2016] to

first observe that E[Z] = V e
1
2λ

2

and Var[Z] ≤ E[exp(2Xw)] = V e2λ
2

. After conditioning on the event that

Xw ≤ 1
2λ log(V) and applying Berstein’s inequality just like in Arora et al. [2016] completes the proof.

We next prove Lemma 5.4.5 that establishes a linear relationship between Φpf and f (under Assumption 5.4.4)

and also the guarantees for f on natural tasks.

Lemma 5.4.5. Under Assumption 5.4.4, any feature map f : S → Rd satisfies Φpf (s) = Af(s) + b, for all

s ∈ S.

Proof. Assumption 5.4.4 gives us that log(Zθ) = 1
2θ

⊤Aθ + θ⊤b + c. We prove this lemma by matching the

gradients of log(Zθ) and the quadratic function on the R.H.S.

∇θ log(Zθ) =
∇θZθ
Zθ

=

∑
w∈W eϕ

⊤
wθϕw

Zθ
=
∑
w∈W

pθ(w)ϕw = Φpθ

200

Whereas the gradient of the quadratic part is ∇θ[12θ
⊤Aθ+ θ⊤b+ c] = Aθ+ b. Matching the two for θ = f(s)

gives us Φpf (s) = Φpf(s) = Af(s) + b.

Corollary 5.4.6. Using Lemma 5.4.5, for any ϵ-optimal f , as defined in Theorem 5.4.3, for classification

tasks that are (τ,B)-natural w.r.t. Φ we have ℓT (f) ≤ τ +O(
√
ϵ).

Proof. The main idea is that Lemma 5.4.5 gives us that Φpf (s) = Af(s) + b and thus any linear function of

Φpf will also be a linear function of f(s). From Theorem 5.5.1 (or Theorem 5.4.3), we also know that Φpf

will do well on T , i.e. ℓT (Φpf) ≤ τ +O(B
√
ϵ). We formalize7 the intuition as

ℓT (Φpf) = inf
λ∈Rd,b

ℓT (Φpf , (λ, b)) = inf
λ∈Rd,b

ℓT (Af + b, (λ, b)) = inf
λ∈Rd,b

ℓT (f, (A⊤λ, b+ λ⊤b))

≥ inf
v∈Rd,b′

ℓT (f, (v, b′)) = ℓT (f)

This shows that ℓT (f) ≤ ℓT (Φpf) ≤ τ +O(B
√
ϵ) and completes the proof.

5.12.5 Proofs for Section 5.10

Theorem 5.10.1. The optimal solution f∗,Φ∗ = arg minf,Φ ℓquad(f,Φ) satisfies

Φ∗ = BU⊤
d , for full rank B ∈ Rd×d

f∗(s) = (Φ∗Φ∗⊤)−
1/2Φ∗p∗

·|s = CU⊤
d p∗

·|s, for full rank C ∈ Rd×d

If Φ is fixed, then the optimal solution is f∗(s) = (ΦΦ⊤)−1/2Φp∗
·|s.

Proof. From Equations (5.10) and (5.11) we know that, ℓquad,s(θ,Φ) = −θ⊤Φp∗
·|s+ 1

2∥Φ
⊤θ∥2 and ℓquad(f,Φ) =

E
s∼pL

[ℓquad,s(f(s),Φ)]. For a fixed Φ, we define f∗Φ(s) = arg minθ∈Rd ℓquad,s(θ,Φ).

We use the first-order optimality condition to get f∗Φ(s), by using the fact that∇θℓquad,s(θ,Φ) = −Φp∗
·|s+ΦΦ⊤θ.

Setting the gradient to zero, we get f∗Φ(s) = (ΦΦ⊤)−1Φp∗
·|s

8. To get the optimal Φ∗ for this objective, we

7Note that here we assume that we learn both a linear classifier and an intercept for a downstream classification task. All
results in the paper essentially remain the same with an intercept in the definition of classification loss.

8It will be clear later that the optimal solution will have as high a rank as possible Φ. All inverses can be replaced by
pseudo-inverses for low-rank matrices.

201

plug in this expression for f∗Φ in ℓquad and find Φ∗ = arg minΦ ℓquad(f
∗
Φ,Φ).

ℓquad(f
∗
Φ,Φ) = E

s∼p∗
[ℓquad,s(f

∗
Φ(s),Φ)] = E

s∼p∗

[
−f∗Φ(s)⊤Φp∗

·|s +
1

2
∥Φ⊤f∗Φ(s)∥2

]
= E
s∼p∗

[
−((ΦΦ⊤)−1Φp∗

·|s)
⊤Φp∗

·|s +
1

2
∥Φ⊤(ΦΦ⊤)−1Φp∗

·|s∥
2

]
= E
s∼p∗

[
−p∗

·|s
⊤Φ⊤(ΦΦ⊤)−1Φp∗

·|s +
1

2
p∗
·|s

⊤Φ⊤(ΦΦ⊤)−1ΦΦ⊤(ΦΦ⊤)−1Φp∗
·|s

]
= E
s∼p∗

[
−1

2
p∗
·|s

⊤Φ⊤(ΦΦ⊤)−1Φp∗
·|s

]
= −1

2
E

s∼p∗

[
tr
(
p∗
·|s

⊤Φ⊤(ΦΦ⊤)−1Φp∗
·|s

)]
= −1

2
tr

(
Φ⊤(ΦΦ⊤)−1Φ E

s∼p∗

[
p∗
·|sp

∗
·|s

⊤
])

= −1

2

〈
Φ⊤(ΦΦ⊤)−1Φ, E

s∼p∗

[
p∗
·|sp

∗
·|s

⊤
]〉

= −1

2

〈
Φ⊤(ΦΦ⊤)−1Φ,Ω∗〉

where Ω∗ is the substitutability matrix defined in Definition 5.5.2. Let Φ = NTV ⊤ be the SVD. Then the

above objective reduces to ℓquad(f
∗
Φ,Φ) = − 1

2

〈
V V ⊤,Ω∗〉 And hence learning the optimal Φ∗ reduces to

learning an optimal V ∗ such that

V ∗ = arg min
V ∈RV ×d,V ⊤V =Id

−⟨V V ⊤,Ω∗⟩

We will now show that the best such matrix is the matrix of top d eigenvectors of Ω∗, i.e. V ∗ = Ud

(cf. Definition 5.5.2). Here we will assume that the eigenvalues of Ω∗ are all distinct for simplicity of

presentation. First we note that ⟨V V ⊤,Ω∗⟩ = ∥V V ⊤Ω∗ 1
2 ∥2F , where Ω∗ 1

2 = US
1
2U⊤, with U , Ud and S

define in Definition 5.5.2. This can be shown by the following sequence of steps

⟨V V ⊤,Ω∗⟩ = tr(V V ⊤Ω∗) = tr(V V ⊤V V ⊤Ω∗) = tr(V V ⊤Ω∗V V ⊤)

= tr(V V ⊤USU⊤V V ⊤) = tr(V V ⊤US
1
2U⊤US

1
2U⊤V V ⊤)

= tr(V V ⊤Ω∗ 1
2 Ω∗ 1

2V V ⊤) = ⟨V V ⊤Ω∗ 1
2 ,V V ⊤Ω∗ 1

2 ⟩

= ∥V V ⊤Ω∗ 1
2 ∥2F

Furthermore, we notice that ∥V V ⊤Ω∗ 1
2 ∥2F = ∥Ω∗ 1

2 ∥2F − ∥Ω∗ 1
2 − V V ⊤Ω∗ 1

2 ∥2F as shown below

∥Ω∗ 1
2 − V V ⊤Ω∗ 1

2 ∥2F = ∥Ω∗ 1
2 ∥2F + ∥V V ⊤Ω∗ 1

2 ∥2F − 2tr(Ω∗ 1
2V V ⊤Ω∗ 1

2)

202

= ∥Ω∗ 1
2 ∥2F + ∥V V ⊤Ω∗ 1

2 ∥2F − 2tr(Ω∗ 1
2V V ⊤V V ⊤Ω∗ 1

2)

= ∥Ω∗ 1
2 ∥2F + ∥V V ⊤Ω∗ 1

2 ∥2F − 2∥V V ⊤Ω∗ 1
2 ∥2F

= ∥Ω∗ 1
2 ∥2F − ∥V V ⊤Ω∗ 1

2 ∥2F

Thus we get arg min
V ∈RV ×d,V ⊤V =Id

−⟨V V ⊤,Ω∗⟩ = arg min
V ∈RV ×d,V ⊤V =Id

∥Ω∗ 1
2 − V V ⊤Ω∗ 1

2 ∥2F .

Note that V V ⊤Ω∗ 1
2 has columns that are columns of Ω∗ 1

2 projected on the space spanned by columns V . It

is folklore that the best such subspace V ∗ is the subspace spanned by the top d eigenvectors of Ω∗ 1
2 , which

is the same as top d eigenvectors of Ω∗, thus giving us V ∗V ∗⊤ = UdU
⊤
d . Thus we get V ∗ = UdM for

M = U⊤
d V ∗.

This tells us that the optimal solution Φ∗ will have SVD of the form Φ∗ = N∗T ∗V ∗⊤, thus giving us

Φ∗ = BU⊤
d for matrix B = N∗T ∗M⊤ ∈ Rd×d. This directly gives f∗ = f∗Φ∗ = (Φ∗Φ∗⊤)−1Φ∗p∗

·|s =

N∗T−1V ∗⊤p∗
·|s = CU⊤

d p∗
·|s for C = N∗T ∗−1M⊤.

5.12.6 Proofs for supporting lemmas

Lemma 5.12.2. For a language model {p·|s}, if T is (τ,B)-natural,

ℓT ({p·|s}) ≤ τ + sup
v∈RV ,∥v∥∞≤B

√
v⊤ΣpL(∆{p·|s})v

γ(pT ; {p·|s})

If T is (τ,B)-natural w.r.t. Φ ∈ Rd×V ,

ℓT ({Φp·|s}) ≤ τ + sup
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
v⊤ΣpL(∆{p·|s})v

γΦ(pT ; {p·|s})

where γ(·) and γΦ(·) are from Definition 5.9.1.

203

Proof. We note the following upper bounds on ℓT ({p·|s}) and ℓT ({Φp·|s}).

ℓT ({p·|s}) = inf
v∈RV

{
ℓT ({p·|s},v)

}
≤ inf

v∈RV ,
∥v∥∞≤B

{
ℓT ({p·|s},v)

}
(5.26)

ℓT ({Φp·|s}) = inf
v=Φ⊤λ∈RV

{
ℓT ({p·|s},v)

}
≤ inf

v=Φ⊤λ∈RV ,b∈R,
∥v∥∞≤B

{
ℓT ({p·|s},v)

}
(5.27)

When T is (τ,B)-natural, by Definition 5.3.1 we know that inf
v∈RV

∥v∥∞≤B

[
ℓT ({p∗

·|s},v)
]
≤ τ . We now upper

bound ℓT ({p·|s},v) using Lemma 5.12.8. Taking infimum w.r.t. v ∈ RV , ∥v∥∞ ≤ B from the inequality in

Lemma 5.12.8.

ℓT ({p·|s},v) ≤ ℓT ({p∗
·|s},v) +

√
v⊤ΣpT (∆{p·|s})v

inf
v∈RV

∥v∥∞≤B

ℓT ({p·|s},v) ≤ inf
v∈RV

∥v∥∞≤B

ℓT ({p∗
·|s},v) + sup

v∈RV ,∥v∥∞≤B

√
v⊤ΣpT (∆{p·|s})v

This, combined with Equation (5.26), gives us

ℓT ({p·|s}) ≤ τ + sup
v∈RV ,∥v∥∞≤B

√
v⊤ΣpT (∆{p·|s})v (5.28)

Using Lemma 5.12.10 and the definition of γ(pT ; {p·|s}) in Equation (5.7), we get that

v⊤ΣpT (∆{p·|s})v ≤
∥∥∥ΣpL(∆{p·|s})−

1
2 ΣpT (∆{p·|s})ΣpL(∆{p·|s})−

1
2

∥∥∥
2

(
v⊤ΣpL(∆{p·|s})v

)
=

v⊤ΣpL(∆{p·|s})v

γ(pT ; {p·|s})
(5.29)

We have thus successfully transferred the bound from the distribution pT to pL. Combining this with

Equation (5.28) completes the proof of the first part of the lemma.

We now prove the second part of the lemma where we only assume that T is (τ,B)-natural w.r.t. Φ. Here we

instead take the infimum over classifiers in the span of Φ in Lemma 5.12.8 to get

inf
v=Φ⊤λ∈RV ,b∈R,

∥v∥∞≤B

{
ℓT ({p·|s},v)

}
≤ inf

v=Φ⊤λ∈RV ,b∈R,
∥v∥∞≤B

{
ℓT ({p∗

·|s},v)
}

+

204

sup
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
v⊤ΣpT (∆{p·|s})v (5.30)

This, combined with definition of (τ,B)-natural task w.r.t. Φ and Equation (5.27) gives us

ℓT ({Φp·|s}) ≤ τ + sup
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
v⊤ΣpT (∆{p·|s})v (5.31)

For the last term, for any v = Φ⊤λ, λ ∈ Rd we notice that

v⊤ΣpT (∆{p·|s})v = λ⊤ΦΣpT (∆{p·|s})Φ⊤λ = λ⊤ΣpT (Φ∆{p·|s})λ

≤(a)
∥∥∥ΣpL(Φ∆{p·|s})−

1
2 ΣpT (Φ∆{p·|s})ΣpL(Φ∆{p·|s})−

1
2

∥∥∥
2

(
λ⊤ΣpL(Φ∆{p·|s})λ

)
=
λ⊤ΣpL(Φ∆{p·|s})λ

γΦ(pT ; {p·|s})
=

v⊤ΣpL(∆{p·|s})v

γΦ(pT ; {p·|s})

This combined with Equation (5.31), we get

ℓT ({Φp·|s}) ≤ τ + inf
v=Φ⊤λ∈RV ,
∥v∥∞≤B

√
v⊤ΣpL(∆{p·|s})v

γΦ(pT ; {p·|s})

Lemma 5.12.3 (Pinsker’s inequality). For discrete distributions q, q∗ ∈ ∆V , let q, q
∗ ∈ RV be the corre-

sponding vector of probabilities. Then we have

max
∥v∥∞≤1

|v⊤(q − q∗)| ≤
√

2DKL(q∗, q)

Proof. This basically follows from Pinsker’s inequality which upper bounds the total variation distance

between distributions by their KL-divergence

max
∥v∥∞≤1

|v⊤(q − q∗)| = ∥q − q∗∥1 = 2 TV(q∗, q) ≤
√

2DKL(q∗, q)

We remind the reader that for an embedding matrix Φ ∈ Rd×V , pθ,Φ := softmax(Φ⊤θ)

205

Lemma 5.12.4 (Softmax variant of Pinsker’s inequality). Consider a matrix Φ ∈ Rd×V with d ≤ V . For

any discrete distribution q∗ ∈ ∆V and softmax distribution pθ,Φ = softmax(Φ⊤θ) ∈ ∆V for θ ∈ Rd, let

q∗,pθ,Φ ∈ RV be the corresponding vector of probabilities. Then we have

max
v=Φ⊤λ,
∥v∥∞≤1

|v⊤(pθ,Φ − q∗)| ≤

√
2

(
DKL(pθ,Φ, q∗)− inf

θ∗∈Rd
DKL(pθ∗,Φ, q∗)

)
(5.32)

Pinsker’s inequality (Lemma 5.12.3), on the other hand, gives

max
∥v∥∞≤1

|v⊤(pθ,Φ − q∗)| ≤
√

2DKL(pθ,Φ, q∗)

Proof. Define the loss ρ(θ) := DKL(pθ,Φ, q
∗). The statement in Equation (5.32) to prove reduces to

max
∥Φ⊤λ∥∞≤1

|λ⊤(Φpθ,Φ − Φq∗)| ≤

√
2

(
ρ(θ)− inf

θ∗∈Rd
ρ(θ∗)

)
(5.33)

To prove this, we compute the gradient and hessian of ρ(θ) w.r.t. θ. We can simplify ρ(θ) as follows

ρ(θ) = DKL(pθ,Φ, q
∗) = E

w∼q∗
[− log(pθ,Φ(w))] = E

w∼q∗

[
− log

(
eθ

⊤ϕw∑
w′ eθ

⊤ϕw′

)]

= −θ⊤Φq∗ + log

(∑
w′

eθ
⊤ϕw′

)
= −θ⊤Φq∗ + log (Zθ)

The gradient is

∇ρ(θ) = ∇
[
−θ⊤Φq∗ + log(Zθ)

]
= −Φq∗ +

∇Zθ
Zθ

= −Φq∗ +
∇
∑
w e

θ⊤ϕw

Zθ
= −Φq∗ +

∑
w e

θ⊤ϕwϕw
Zθ

= −Φq∗ + Φpθ,Φ

Similarly the Hessian can be computed

∇2ρ(θ) = ∇(∇ρ(θ)) = ∇[−Φq∗ + Φpθ,Φ] = ∇
∑
w∈W

pθ,Φ(w)ϕw =
∑
w∈W

∇e
θ⊤ϕw

Zθ
ϕw

=
∑
w∈W

eθ
⊤ϕw

Zθ
ϕwϕ

⊤
w −

eθ
⊤ϕw

Z2
θ

ϕw

(∑
w′

eθ
⊤ϕw′ϕw′

)⊤

206

= E
w∼pθ,Φ

[ϕwϕ
⊤
w]−

(
E

w∼pθ,Φ
[ϕw]

)(
E

w∼pθ,Φ
[ϕw]

)⊤

= Covw∼pθ,Φ [ϕw]

Where Covw∼pθ,Φ [ϕw] denotes the covariance of the word embeddings ϕw when measured w.r.t. the distribution

pθ,Φ. This directly gives us that ∇2ρ(θ) ≽ 0, since the covariance is always psd, and thus ρ is convex in θ.

We return to the statement in Equation (5.33) that we need to prove. With the expression for gradient of ρ

at hand, we can rewrite Equation (5.33) as trying to prove

|λ⊤∇ρ(θ)| ≤ ∥Φ⊤λ∥∞

√
2

(
ρ(θ)− inf

θ∗∈Rd
ρ(θ∗)

)
(5.34)

Furthermore, using the definition of the Hessian, it is not hard to see for some λ, θ̃ ∈ Rd that λ⊤∇2ρ(θ̃)λ =

Covw∼pθ̃,Φ [λ⊤ϕw] ≤ E
w∼pθ̃,Φ

[(λ⊤ϕw)2] ≤ ∥Φ⊤λ∥2∞. Thus we can evoke Lemma 5.12.5 with ℓ = ρ and

L = ∥Φ⊤λ∥2∞ to prove Equation (5.34) and thus completing the proof. Intuitively Lemma 5.12.5 exploits the

smoothness of the function to argue that small suboptimality (i.e. being close to optimal solution in function

value) is sufficient to guarantee small norm of the gradient, a property that is well-known in the optimization

literature. We now present this lemma

Lemma 5.12.5. If a function ℓ : Rd → R and λ ∈ Rd satisfy λ⊤∇2ℓ(θ̃)λ ≤ L,∀θ̃ ∈ Rd (L-smoothness in the

direction of λ) and if ℓ∗ = infθ∈Rd ℓ(θ), then |λ⊤∇ℓ(θ)|2 ≤ 2L(ℓ(θ)− ℓ∗)

Proof. This is a variant of a classical result used in optimization and we prove it here for completeness. For

any η ∈ R we have

ℓ(θ)− ℓ∗ ≥(a) ℓ(θ)− ℓ(θ − ηλ)

≥(b) ℓ(θ)−
(
ℓ(θ) + ⟨∇ℓ(θ),−ηλ⟩+

η2

2
λ⊤∇2ℓ(θ̃)λ

)
≥(c) η(λ⊤∇ℓ(θ))− η2L

2

where (a) follows from the definition of infimum and (b) follows from Taylor’s expansion for some θ̃ ∈ [θ−ηλ, θ]

and (c) follows from the smoothness condition in the statement of the lemma. Picking η = λ⊤∇ℓ(θ)
L gives us

ℓ(θ)− ℓ∗ ≥ 1
2L |λ

⊤∇ℓ(θ)|2, thus completing the proof.

207

Lemma 5.12.6. For a language model {p·|s} and classifier v ∈ RV ,

v⊤ΣpL(∆{p·|s})v ≤ 2∥v∥2∞
(
ℓxent({p·|s})− ℓ∗xent

)
where ΣpL(g) = E

s∼pL
[g(s)g(s)⊤] and ∆{p·|s}(s) = p·|s − p∗

·|s are defined in Section 5.9

Proof. We first note that

ℓxent({p·|s})− ℓxent({p∗
·|s}) = E

s∼pL
E

w∼p∗·|s

[
log

(
p∗
·|s(w)

p·|s(w)

)]
= E
s∼pL

[
DKL(p∗

·|s,p·|s)
]

(5.35)

We bound v⊤ΣpL(∆{p·|s})v below

v⊤ΣpL(∆{p·|s})v = E
s∼pL

[(
v⊤(p·|s − p∗

·|s)
)2]

≤(a) ∥v∥2∞ E
s∼pL

[
2DKL(p∗

·|s,p·|s)
]

=(b) 2∥v∥2∞
(
ℓxent({p·|s})− ℓxent({p∗

·|s})
)

where (a) follows from Lemma 5.12.3 (Pinsker’s inequality), (b) uses Equation (5.35).

Lemma 5.12.7. For a fixed Φ, a softmax language model with features f and λ ∈ Rd,

λ⊤ΣpL(Φ∆{pf(s)})λ ≤ 2∥Φ⊤λ∥2∞ (ℓxent(f,Φ)− ℓ∗xent(Φ))

where ΣpL(Φ∆{pf(s)}) = E
s∼pL

[
(Φpf(s) − Φp∗

·|s)(Φpf(s) − Φp∗
·|s)

⊤
]
as defined in Section 5.9.

Proof. We start by nothing that

λ⊤ΣpL(Φ∆{pf(s)})λ = λ⊤ E
s∼pL

[
(Φpf(s) − Φp∗

·|s)(Φpf(s) − Φp∗
·|s)

⊤
]
λ

= E
s∼pL

[|λ⊤(Φpf(s) − Φp∗
·|s)|

2] = E
s∼pL

[|(Φ⊤λ)⊤(pf(s) − p∗
·|s)|

2]

We will use the variant of Pinsker’s inequality from Lemma 5.12.4 to bound each term on the right hand side.

208

Notice that ℓxent(f,Φ)− ℓ∗xent(Φ) = E
s∼pL

[ℓxent,s(f(s),Φ)− inf
θ∈Rd

ℓxent,s(θ,Φ)].

λ⊤ΣpL(Φ∆{pf(s)})λ = E
s∼pL

[|(Φ⊤λ)⊤(pf(s) − p∗
·|s)|

2]

≤(a) 2∥Φ⊤λ∥2∞ E
s∼pL

[
DKL(p∗

·|s,pf(s),Φ)− inf
θ∈Rd

DKL(p∗
·|s,pθ,Φ)

]
≤ 2∥Φ⊤λ∥2∞ E

s∼pL

[
ℓxent,s(f(s),Φ)− inf

θ∈Rd
ℓxent,s(θ,Φ)

]
≤ 2∥Φ⊤λ∥2∞ (ℓxent(f,Φ)− ℓ∗xent(Φ))

where (a) follows from Lemma 5.12.4. This completes the proof.

Classification loss to covariance of error

Lemma 5.12.8. For any task T and classifier v ∈ RV and predicted probabilities {p·|s}

ℓT ({p·|s},v) ≤ ℓT ({p∗
·|s},v) +

√
E

s∼pT

[
(v⊤(p·|s − p∗

·|s))
2
]

= ℓT ({p∗
·|s},v) +

√
v⊤ΣpT (∆{p·|s})v

where ΣpT (g) = E
s∼pT

[g(s)g(s)⊤] and ∆{p·|s}(s) = p·|s − p∗
·|s are defined in Section 5.9.

Proof. The following sequence of inequalities proves it

ℓT ({p·|s},v) = E
(s,y)∼pT

[
ℓ(v⊤p·|s, y)

]
≤(a) E

(s,y)∼pT

[
ℓ(v⊤p∗

·|s, y) + |v⊤(p∗
·|s − p·|s)|

]
≤(b) E

(s,y)∼pT

[
ℓ(v⊤p∗

·|s, y)
]

+

√
E

s∼pT

[∣∣∣v⊤(p∗
·|s − p·|s)

∣∣∣2]

= ℓT ({p∗
·|s},v) +

√
v⊤
(

E
s∼pT

[
(p∗

·|s − p·|s)(p
∗
·|s − p·|s)⊤

])
v

= ℓT ({p∗
·|s},v) +

√
v⊤ΣpT (∆{p·|s})v

where (a) follows from 1-lipschitzness of ℓ, (b) follows from Jensen’s inequality.

Handling distribution shift

Lemma 5.12.9. For any g : S → RD and pT ∈ ∆S , we have ∥ΣpL(g)−
1
2 ΣpT (g)ΣpL(g)−

1
2 ∥2 ≤ γ(pT)−1

209

Proof. By definition of γ(pT), we have that

ΣpL(g) = E
s∼pL

[g(s)g(s)⊤] =
∑
s∈S

pL(s)g(s)g(s)⊤

≽ γ(pT)
∑
s∈S

pT (s)g(s)g(s)⊤ = γ(pT) E
s∼pT

[g(s)g(s)⊤] = γ(pT)ΣpT (g)

Thus 1
γ(pT)ΣpL(g) ≽ ΣpT (g) and hence 1

γ(pT)ΣpL(g)−
1
2 ΣpL(g)ΣpL(g)−

1
2 ≽ ΣpL(g)−

1
2 ΣpT (g)ΣpL(g)−

1
2 , which

is equivalent to 1
γ(pT)ID ≽ ΣpL(g)−

1
2 ΣpT (g)ΣpL(g)−

1
2 . This finishes the proof.

Lemma 5.12.10. For matrices X,Y ∈ RD×D s.t. X,Y ≽ 0 and Y is full rank, we have that max
a∈RD,0<∥a∥≤λ

a⊤Xa
a⊤Y a

=

∥Y − 1
2XY − 1

2 ∥2 for any norm ∥ · ∥.

Proof. Note that a⊤Xa
a⊤Y a

is independent of the scaling of a. The following sequence of inequalities completes

the proof

max
a∈RD,0<∥a∥≤λ

a⊤Xa

a⊤Y a
= max

a∈RD

a⊤Xa

a⊤Y a
= max

a∈RD

a⊤Xa

(Y
1
2 a)⊤(Y

1
2 a)

= max
a∈RD,∥Y

1
2 a∥2=1

a⊤Xa = max
b∈RD,∥b∥2=1

(Y − 1
2 b)⊤X(Y − 1

2 b)

= max
b∈RD,∥b∥2=1

b⊤Y − 1
2XY − 1

2 b = ∥Y − 1
2XY − 1

2 ∥2

5.13 Experiment details

For all experiments9, we use the 117M parameter “small” GPT-2 model proposed in Radford et al. [2019]

and implemented in HuggingFace [Wolf et al., 2019]. Linear classification experiments (except for fine-tuning

baseline in Table 5.1) are performed on fixed output features from GPT-2.

We note that the binary SST-2 dataset used in all experiments is comprised of complete sentences, and there

are 6,920 train examples and 1,821 test examples. In particular, this dataset is smaller than the version

included with the GLUE benchmark [Wang et al., 2018]. This smaller version of SST-2 better fits the sentence

completion hypothesis we propose.

9Link to code: https://github.com/sadhikamalladi/mathematical-exploration-downstream-tasks.

210

https://github.com/sadhikamalladi/mathematical-exploration-downstream-tasks

5.13.1 Solving downstream tasks using f and Φpf

The features f from GPT-2 for any input sequence (w1, . . . , wN) is the output embedding of the final token

wN at the final layer, where N is the input length and can be different for different inputs. This is also the

embedding that is directly multiplied by the word embeddings to get the softmax distribution for language

modeling, as in the theoretical setting. To use a prompt, the same prompt is added at the end of all inputs

and the features are extracted for this modified input.

We use the LogisticRegressionCV class from the scikit-learn package to fit linear classifiers to all fixed

features (i.e., no finetuning). We use the liblinear solver and one-vs-rest loss function unless it catastrophically

fails (e.g., close to random performance) on a particular multi-class task. In that case, we use the stochastic

average gradient (SAG) algorithm with multinomial loss. We use 5-fold cross validation for all experiments

and test values for the regularization parameter C between 1e−6 and 1e4 for small datasets (i.e., fewer than

10K examples) and between 1e−3 and 1e3 for larger datasets.

Details about word subsets: For all of the results presented in Table Table 5.1, we use a pre-trained

GPT-2 model. For SST, we use the prompt “This movie is ” when indicated. For AG News, we use the

prompt “This article is about ” when indicated.

We compute the conditional probability of selecting a subset of words to complete the sentence. For AG News,

this subset is: ’world’, ’politics’, ’sports’, ’business’, ’science’, ’financial’, ’market’, ’foreign’, ’technology’,

’international’, ’stock’, ’company’, ’tech’, ’technologies’. For SST, this subset is: ’:)’, ’:(’, ’great’, ’charming’,

’flawed’, ’classic’, ’interesting’, ’boring’, ’sad’, ’happy’, ’terrible’, ’fantastic’, ’exciting’, ’strong’. For AG News,

the class words we use are: ’foreign’, ’sports’, ’financial’, ’scientific’. For SST, the class words we use are ‘:)’

and ‘:(’.

We account for BPE tokenization by using the encoding of the word directly and the encoding of the word

with a space prepended. We then filter to use only words that encode to a single BPE token.

Tests on additional datasets: We also test the performance of pre-trained GPT-2 embeddings f and

the conditional mean embeddings Φpf on the DBPedia [Auer et al., 2007], Yahoo Answers [Zhang et al.,

2015], TREC [Li and Roth, 2002], IMDb [Maas et al., 2011], Customer Review (CR) [Hu and Liu, 2004], and

MPQA polarity [Wilson and Wiebe, 2003] datasets in Table Table 5.2. We limited the training set size to

250K for larger datasets (i.e., DBPedia and Yahoo Answers). For CR and MPQA, we follow Zhang et al.

211

[2015] and average the performance across 10 random 90-10 train-test splits of the dataset.

We find that Φpf consistently has comparable performance to f across non-sentiment and sentiment down-

stream classification tasks. We include baseline results of bag of n-grams (BonG) for most tasks and the

mLSTM model [Radford et al., 2017] for sentiment tasks. BonG performs quite well on the larger datasets,

but not as well on smaller datasets, due to the high dimensionality of features.

For sentiment tasks, adding a prompt almost always boosts performance. We also demonstrate that much

of the performance can be recovered by only looking at “positive” and “negative” or “:)” and “:(” as class

words. Using these 2-dimensional features is even more sample-efficient than the standard 768-dimensional

ones.

We also include results using the pre-trained BERT base cased model [Devlin et al., 2019, Wolf et al., 2019],

using the embedding at the first token as input to the downstream task. We also tried using the mean

embedding and last token embedding and found that the first token embedding is often the best. Moreover,

the first token embedding is what is extracted in the traditional usage of BERT on downstream tasks, though

we note that it is rare to use BERT without fine-tuning.

5.13.2 Finetuning experiments

As a strong baseline, we finetune the GPT-2 features along with learning a linear classifier for the SST and

AG News classification tasks and report accuracy numbers in Table 5.1. We use a maximum sequence length

of 128 BPE tokens for downstream inputs of SST-2 and a maximum length of 400 BPE tokens for AG News

inputs. We use the end of sentence token as the padding token. The datasets are described below.

1. AG News has 108K train examples, 12K dev examples, 7600 test examples. We split the train set for

AG News into train and dev (90-10) and use the same test set as the non-finetuning experiments.

2. The sentence version of SST-2 has 6,920 train examples (same as non-finetuning), and 810 examples for

dev and test each (split the original test set in half).

3. Fine-grained SST-2 has 8,544 train examples (same as non-finetuning), and 1,105 examples each for the

dev and test data (split the original test set in half).

To select the best hyperparameter configuration, we run a grid search over learning rate and batch size. We

212

Table 5.2: GPT-2 performance without fine-tuning on downstream task test sets with k classes. We provide
the performance of bag of n-grams (BonG) as an approximate baseline for these tasks. AG News, DBPedia
and Yahoo performances were reported in Zhang et al. [2015], and the other tasks were reported in Khodak
et al. [2018]. We also include results from mLSTM (Sentiment Neuron) [Radford et al., 2017] for the
sentiment-related classification tasks (SST, IMDb, CR, and MPQA) with numbers reported from Khodak
et al. [2018]. Furthermore, we include results for BERT [Devlin et al., 2019] features without fine-tuning,
where we use the output features for the first position of an input for linear classification. An asterisk
indicates we add a standard sentiment prompt “The sentiment is” to each input, but for AG News we used
the prompt “This article is about”. We also tested the performance of the conditional probability distribution
over “positive” and “negative” as well as “:)” and “:(” on the sentiment-related tasks with and without the
prompt.

Task k f(s) Φpf (s) p·|s: pos,neg p·|s: :),:(BonG mLSTM BERT

Non-sentiment

AG News 4 90.7 84.6 - - 92.4 (n = 5) - 88.9
AG News* 4 91.1 88.2 - - - - 89.9
DBPedia 14 97.2 88.2 - - 98.6 (n = 5) - 98.7
Yahoo 10 69.2 56.7 - - 68.5 (n = 5) - 65.0
TREC 6 93.6 87.8 - - 89.8 (n = 3) - 90.6

Sentiment

SST 2 87.5 83.3 74.9 78.7 80.9 (n = 2) 91.8 85.8
SST* 2 89.4 87.3 80.8 79.1 - - 84.1
SST fine 5 49.2 43.5 37.5 39.2 42.3 (n = 3) 52.9 43.5
SST fine* 5 49.4 48.0 41.5 40.2 - - 43.3
IMDb 2 88.1 82.7 73.8 76.2 89.8 (n = 3) 92.3 82.2
IMDb* - 88.4 85.3 81.8 80.9 - - 84.0
CR 2 86.8 84.6 74.9 80.0 78.3 (n = 3) 91.4 85.5
CR* - 87.9 87.1 82.5 79.4 - - 84.6
MPQA 2 86.0 79.2 75.6 70.7 85.6 (n = 3) 88.5 87.3
MPQA* - 87.8 86.1 80.3 71.4 - - 88.1

train each model for 10 epochs. For all datasets, we test learning rates 5e−5, 1e−4, and 3e−4. For both

version of SST-2, we try batch sizes 8, 16, and 32, and for AG News, we try batch sizes 8, 12, and 16. We

note that the longer sequence length of AG News inputs required us to use parallelization across multiple

GPUs to simulate larger batch sizes, which made batch size 32 prohibitively expensive to test.

We take the hyperparameter configuration that achieves the best performance on the dev set and then perform

fine-tuning using those settings with three different random seeds: 8, 33, and 42. We then report the average

performance on the test set in Table 5.1.

We perform the hyperparameter grid search over the standard datasets and then perform fine-tuning using

the best settings on the dataset with task-specific prompts added. For SST-2, we use the prompt “This movie

is ”, and for AG News we use “This article is about ”.

213

Table 5.3: Comparing Quad features to cross-entropy features for GPT-2 trained on the IMDb unlabeled
corpus [Maas et al., 2011]. In this experiment we fix Φ to be the word embeddings from prertained GPT-2
model for the cross-entropy objective. For the Quad objective, we initialize Φ to be the SVD of the pre-trained
embeddings. An asterisk indicates that we added the prompt “This movie is ” to each input.

Task f(s) (xent) Φpf (s) (xent) f(s) (Quad)

SST 82.1% 79.9% 77.3%
SST* 83.1% 81.1% 80.7%

Table 5.4: Comparing Quad features to cross-entropy features for GPT-2 trained on the Amazon corpus. An
asterisk indicates that we added the prompt “This movie is ” to each input. Note that the validation loss
was still decreasing at the time of measurement.

Task f(s) (xent) Φpf (s) (xent) f(s) (Quad, learned Φ)

SST 89.4% 89.7% 79.2%
SST* 89.7% 89.2% 84.3%

5.13.3 Testing Quad objective

We test two models with the same parametrizations, one trained using our Quad objective and another

trained with the standard cross-entropy objective using the unlabeled IMDb corpus [Maas et al., 2011] and

the Amazon product review corpus [McAuley et al., 2015]. We slightly modify the standard architecture of

GPT-2 to generate Tables Table 5.3 and Table 5.4. First we add a single linear layer (that is trained) on top

of the output features of the standard Transformer architecture. Furthermore, instead of tying the input and

output word (token) embeddings, we learn them separately so that f and Φ are independent functions; this

is more in line with out theoretical setup. We fix the input embeddings and the positional embeddings to be

the parameters from the pre-trained GPT-2.

For Quad, we initialize Φ, the output embeddings, using the singular vectors of the pre-trained word

embeddings Φ. For the cross-entropy models, we initialize Φ to be the full pre-trained word embeddings Φ,

because we found that initializing with the singular vectors harmed performance. Given our parameterization,

initializing with the singular vectors is as expressive as initializing with the pretrained embeddings Φ

themselves; however it potentially lends a better optimization landscape and speeds up training for our new

objective Quad. As described in Section 5.5.2, we minimize the following objective

ℓquad(f,Φ) = E
(s,w)

[
−f(s)⊤ϕw +

1

2
∥Φ⊤f(s)∥2

]
(5.36)

where (s, w) are sampled from the text corpus. The implementation of the Quad loss is the same as the

214

standard cross-entropy loss, the main difference being the second term: it is 1
2∥Φ

⊤f(s)∥2 for Quad instead of

the log-partition function log
(∑

w′ ef(s)
⊤ϕw′

)
in the cross-entropy objective.

Because IMDb is a smaller dataset, we fix Φ at its initialization and only train f to generate Table Table 5.3.

When training on the Amazon dataset, we initialized Φ the same way as we did for the IMDb dataset, but we

allowed f and Φ to both be trained, since more data was available. To train the models, we use the standard

learning rate schedule as in in Radford et al. [2019]. To learn a model on IMDb, we use a context size of 512

BPE tokens, and for the Amazon reviews dataset [McAuley et al., 2015], we use the standard context length

of 1,024 BPE tokens.

We observe that training using Quad, in both cases, yields comparable performance to the language model

on the SST task, but always slightly worse. According to the theory, features f(s) from Quad should learn

p∗
·|s on a subspace, just like Φpf from cross-entropy models, thus making the comparison between these two

important. Furthermore, adding a prompt consistently improves performance for both objectives. While

Quad did not beat the cross-entropy in either case, its good performs at least demonstrates that insights from

the theoretical analysis can translate to practical algorithms. We leave exploring the gap in performance

between Quad and cross-entropy and a more extensive evaluation of Quad for future work.

5.13.4 Learning the quadratic approximation of the log-partition function

In Assumption 5.4.4, we assert that there is a quadratic fit for the log partition function, which allows us to

show in Lemma 5.4.5 that a linear relation holds between f and Φpf . We validate these theoretical findings

by fitting a quadratic function to the log partition function for a subset of embeddings from the IMDb,

SST, and AG News datasets (Figure 5.1). Here, we describe how we learned A, b and c. To ensure A is

symmetric and positive semi-definite as required, we parametrize A = UUT . As defined earlier, the partition

function Zθ =
∑
w′ eθ

⊤ϕw′ and Φpθ =
∑
w′

eθ
⊤ϕ

w′

Zθ
ϕw′ for any θ ∈ Rd. We minimize the following objective

function:

L(U , b, c) =E
θ

[
λ1

(
log(Zθ)−

1

2
θ⊤UU⊤θ − θ⊤b− c

)2

+ λ2
∥∥Φpθ −UU⊤θ − b

∥∥2] (5.37)

In practice, we train only on the regression loss (i.e., λ1 = 0, λ2 = 1) for the most promising results. Note

215

Figure 5.2: Fit of the learned quadratic function to the log partition function on various datasets for features
computed by the full, pre-trained GPT-2. We also plot the y = x line for reference. These plots are meant to
verify Assumption 5.4.4.

(a) Trained on IMDb [Maas et al., 2011] (b) Trained on Amazon [McAuley et al., 2015]

Figure 5.3: Logistic loss of conditional mean features on the SST-2 task for various checkpoints of a GPT-2
architecture trained on IMDb and Amazon. The reported cross-entropy is measured on the validation set.
The red trend shows the fit of a square-root function, which is what the upper bound in Theorem 5.4.3 looks
like.

that the regression term is trying to learn a linear relationship between between θ and Φpθ that Lemma 5.4.5

aims to prove. This ends up learning a matrix A = UU⊤ and vector b that also satisfy the quadratic form

216

of log(Zθ) from Assumption 5.4.4.

We use 20,000 examples from a mix of IMDb, SST, and AG News embeddings as the training set. Thus we

sample θ by sampling s from the aforementioned datasets and set θ = f(s), f being the feature map from

pretrained GPT-2. We use the Adam [Kingma and Ba, 2015] optimizer with learning rate 1e−3 for U and

learning rate 1e−4 for b and c. We decay the learning rate every 50 steps by a factor of 0.1. We use the U

obtained after 8 epochs of training. We further demonstrate the quality of the learned fit by plotting the true

log partition and estimated log partition function for embeddings from other datasets in Figure 5.2.

5.13.5 Experimentally checking Theorem 5.4.3

Theorem 5.4.3 can be informally summarized as stating that an ϵ suboptimality in the cross-entropy of a

d-dimensional language model propagates to a
√
ϵ increase in the logistic loss. We note that the τ,B, and

γ(pT) factors are fixed for a given pre-training corpus and downstream task, so we can empirically test if this

square root relationship holds in practice. In particular, Theorem 5.4.3 says

ℓT (Φpf) ≤ τ +

√
2B2 (γ(pT))

−1
(ℓxent(f,Φ)− ℓ∗xent) (5.38)

Of these, τ,B, γ(pT)−1 and ℓ∗xent are independent of the language model (f,Φ) and only depend on the task

T and language modeling distribution. Thus we can rewrite this as ℓT (Φpf) ≤ c + a
√
ℓxent(f,Φ)− b for

suitable constants a, b, c ∈ R. The left hand side, ℓT (Φpf), is the logistic loss of conditional mean features

from language model (f,Φ) on task T and ℓxent(f,Φ) is the cross-entropy loss of the language model, both of

which can be measured in practice.

We train a 117M parameter GPT-2 model from scratch on the IMDb and Amazon corpora, described in

Section 5.13.3. We maintain checkpoints during training, and for each checkpoint, we measure the cross-

entropy of the model on the validation set as well as the performance of the conditional mean features Φpf

on SST-2. Plotting these values together yields Figure 5.3.

We furthermore fit a square root trend, shown in red, to these points. We learn a, b, c such that y ≈ a
√
x− b+c,

where y = ℓT (Φpf) is the logistic loss and x = ℓxent(f,Φ) is the cross-entropy loss. For this, we perform a

grid search over 100 evenly spaced valid values of b, and for each b, we perform linear regression on
√
x− b to

find a and c. We choose the a, b, c that maximizes the r-value of the regression. While Theorem 5.4.3 only

provides an upper bound on the logistic loss, this experiment shows that some square-root trend is observable

217

in practice.

218

Bibliography

Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of large scale

pre-training. In International Conference on Learning Representations, 2022.

Woo-Kyoung Ahn and William F Brewer. Psychological studies of explanation—based learning. Investigating

explanation-based learning, 1993.

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating

distribution. The Journal of Machine Learning Research, 2014.

Rie Kubota Ando and Tong Zhang. Two-view feature generation model for semi-supervised learning. In

International conference on Machine learning, 2007.

Sanjeev Arora and Andrej Risteski. Provable benefits of representation learning. arXiv, 2017.

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–going beyond svd. In 2012 IEEE 53rd

annual symposium on foundations of computer science. IEEE, 2012.

Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen Wu, and

Michael Zhu. A practical algorithm for topic modeling with provable guarantees. In International conference

on machine learning. PMLR, 2013.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model approach

to pmi-based word embeddings. Transactions of the Association for Computational Linguistics, 2016.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence embeddings.

In International Conference on Learning Representations, 2017.

Sanjeev Arora, Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. A compressed sensing view of

219

unsupervised text embeddings, bag-of-n-grams, and LSTMs. In International Conference on Learning

Representations, 2018.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi. A

theoretical analysis of contrastive unsupervised representation learning. In International Conference on

Machine Learning, 2019.

Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Dipendra Misra. Investigating the role of negatives

in contrastive representation learning. In International Conference on Artificial Intelligence and Statistics,

2022.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia:

A nucleus for a web of open data. In Proceedings of the 6th International The Semantic Web and 2nd

Asian Conference on Asian Semantic Web Conference, 2007.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual

information across views. In Neural Information Processing Systems, 2019.

Charles R Baker. Joint measures and cross-covariance operators. Transactions of the American Mathematical

Society, 1973.

Yamini Bansal, Gal Kaplun, and Boaz Barak. For self-supervised learning, rationality implies generalization,

provably. In International Conference on Learning Representations, 2021.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE

Transactions on Information theory, 1993.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural

results. Journal of Machine Learning Research, 2002.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Similarity learning for provably accurate sparse linear

classification. In International Conference on Machine Learning, 2012.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric learning for feature vectors and

structured data. CoRR, abs/1306.6709, 2013.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language

model. Journal of machine learning research, 2003.

220

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives.

IEEE transactions on pattern analysis and machine intelligence, 2013.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine Learning

research, 2003.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Conference on

Computational Learning Theory, 1998.

George E. P. Box. Science and statistics. Journal of the American Statistical Association, 1976. doi:

10.1080/01621459.1976.10480949.

Leo Breiman and Jerome H Friedman. Estimating optimal transformations for multiple regression and

correlation. Journal of the American statistical Association, 1985.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.

Neural Information Processing Systems, 2020.

Andreas Buja. Remarks on functional canonical variates, alternating least squares methods and ace. The

Annals of Statistics, 1990.

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling.

Computer Speech & Language, 1999.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive

learning of visual representations. In International conference on machine learning, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big self-supervised

models are strong semi-supervised learners. In Neural Information Processing Systems, 2020b.

Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. Neural Information Processing

Systems, 2021.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

221

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback recurrent neural

networks. In International Conference on Machine Learning, 2015.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Two-stage learning kernel algorithms. In

International Conference on Machine Learning, 2010.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer vision and pattern recognition, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. In North American Chapter of the Association for Computational

Linguistics, 2019.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context

prediction. In IEEE International Conference on Computer Vision, 2015.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative unsu-

pervised feature learning with convolutional neural networks. In Neural Information Processing Systems,

2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.

An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference

on Learning Representations, 2021.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning the

representation, provably. In International Conference on Learning Representations, 2020.

Chris Dyer. Notes on noise contrastive estimation and negative sampling. arXiv preprint arXiv:1410.8251,

2014.

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Self-supervised video representation

learning with odd-one-out networks. In IEEE conference on computer vision and pattern recognition, 2017.

John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, 1957.

222

Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Dimensionality reduction for supervised learning

with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 2004.

Kenji Fukumizu, Francis R Bach, Michael I Jordan, et al. Kernel dimension reduction in regression. The

Annals of Statistics, 2009.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embeddings.

In Empirical Methods in Natural Language Processing, 2021.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting

image rotations. In International Conference on Learning Representations, 2018.

Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, and Alexei A Efros. A century of portraits: A visual

historical record of american high school yearbooks. In IEEE International Conference on Computer Vision

Workshops, 2015.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. DeCLUTR: Deep contrastive learning for unsupervised

textual representations. In Association for Computational Linguistics, 2021.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical dependence

with hilbert-schmidt norms. In International Conference on Algorithmic Learning Theory. Springer, 2005.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya,

Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap

your own latent: A new approach to self-supervised learning. In Neural Information Processing Systems,

2020.

David Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on

Information Theory, 2011.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for

unnormalized statistical models. In International Conference on Artificial Intelligence and Statistics, 2010.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised deep

learning with spectral contrastive loss. In Neural Information Processing Systems, 2021.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An overview

with application to learning methods. Neural computation, 16(12):2639–2664, 2004.

223

Zellig Harris. Distributional structure. Word, 1954.

Elad Hazan and Tengyu Ma. A non-generative framework and convex relaxations for unsupervised learning.

In Neural Information Processing Systems, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In

IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised

visual representation learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2020.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler,

and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization.

In International Conference on Learning Representations, 2019.

Thomas Hofmann. Probabilistic latent semantic indexing. In ACM SIGIR Conference on Research and

Development in Information Retrieval, 1999.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In

Association for Computational Linguistics, 2018.

Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression. In Conference

on Learning Theory, 2012.

Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2004.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.

Strategies for pre-training graph neural networks. In International Conference on Learning Representations,

2020.

Tzee-Ming Huang. Testing conditional independence using maximal nonlinear conditional correlation. The

Annals of Statistics, 2010.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle points

efficiently. In International Conference on Machine Learning, 2017.

224

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in contrastive

self-supervised learning. In International Conference on Learning Representations, 2022.

Sham M Kakade and Dean P Foster. Multi-view regression via canonical correlation analysis. In International

Conference on Computational Learning Theory, 2007.

Mikhail Khodak, Nikunj Saunshi, Yingyu Liang, Tengyu Ma, Brandon Stewart, and Sanjeev Arora. A la carte

embedding: Cheap but effective induction of semantic feature vectors. In Association for Computational

Linguistics, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference

on Learning Representations, 2015.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and

Sanja Fidler. Skip-thought vectors. In Neural Information Processing Systems, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Abhishek Kumar, Alexandru Niculescu-Mizil, Koray Kavukcoglu, and Hal Daumé. A binary classification

framework for two-stage multiple kernel learning. In International Conference on Machine Learning, 2012.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.

Albert: A lite bert for self-supervised learning of language representations. In International Conference on

Learning Representations, 2020.

Yann LeCun and Ishan Misra. Self-supervised learning: The dark matter of intelligence. https://

ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/, 2021. Ac-

cessed: 2022-06-28.

Jason D. Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps: provable

self-supervised learning. Neural Information Processing Systems, 2021.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Neural Information

Processing Systems, 2014.

Xin Li and Dan Roth. Learning question classifiers. In International Conference on Computational Linguistics,

2002.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke

225

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/

Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv

preprint arXiv:1907.11692, 2019.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representations. In

International Conference on Learning Representations, 2018.

Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for conditional models:

Consistency and statistical efficiency. In Conference on Empirical Methods in Natural Language Processing,

2018.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.

Learning word vectors for sentiment analysis. In Association of Computational Linguistics, 2011.

Anuran Makur, Fabián Kozynski, Shao-Lun Huang, and Lizhong Zheng. An efficient algorithm for information

decomposition and extraction. In Conference on Communication, Control, and Computing (Allerton),

2015.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International Conference

on Algorithmic Learning Theory, 2016.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask representa-

tion learning. J. Mach. Learn. Res., 2016.

Julian J. McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable and complementary

products. CoRR, 2015.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation: Contextualized

word vectors. In Neural Information Processing Systems, 2017.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language decathlon:

Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett, Jiawei Han, Xia Song, et al. Coco-lm: Correcting

and contrasting text sequences for language model pretraining. In Neural Information Processing Systems,

2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.

arXiv preprint arXiv:1609.07843, 2016.

226

Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of Machine Learning

Research, 2006.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of

words and phrases and their compositionality. In Neural Information Processing Systems, 2013b.

Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using temporal

order verification. In European Conference on Computer Vision, 2016.

Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, and Charles Blundell. Representation

learning via invariant causal mechanisms. In International Conference on Learning Representations, 2021.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press,

2018.

Jiaqi Mu and Pramod Viswanath. All-but-the-top: Simple and effective postprocessing for word representations.

In International Conference on Learning Representations, 2018.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles.

In European Conference on Computer Vision, 2016.

Kento Nozawa and Issei Sato. Understanding negative samples in instance discriminative self-supervised

representation learning. In Neural Information Processing Systems, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.

arXiv preprint arXiv:1807.03748, 2018.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence embeddings using

compositional n-gram features. North American Chapter of the ACL, 2018.

Christos H Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh Vempala. Latent semantic

indexing: A probabilistic analysis. Journal of Computer and System Sciences, 2000.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders:

Feature learning by inpainting. In IEEE conference on computer vision and pattern recognition, 2016.

227

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global vectors for word representa-

tion. In Conference on Empirical Methods in Natural Language Processing, 2014.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. Deep contextualized word representations. Proceedings of NAACL-HLT, 2018.

Raul Puri and Bryan Catanzaro. Zero-shot text classification with generative language models. arXiv prepring

arXiv:1912.10165, 2019.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and discovering sentiment.

arXiv preprint arXiv:1704.01444, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language

understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-

assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models

are unsupervised multitask learners. OpenAI Blog, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.

arXiv preprint arXiv:1910.10683, 2019.

Prajit Ramachandran, Peter Liu, and Quoc Le. Unsupervised pretraining for sequence to sequence learning.

In Conference on Empirical Methods in Natural Language Processing, 2017.

Michael Reed. Methods of modern mathematical physics: Functional analysis. Elsevier, 2012.

Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra. Can contrastive

learning avoid shortcut solutions? In Neural Information Processing Systems, 2021.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why language models

help solve downstream tasks. In International Conference on Learning Representations, 2021.

Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham Kakade, and

Akshay Krishnamurthy. Understanding contrastive learning requires incorporating inductive biases. In

International Conference on Machine Learning, 2022.

228

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also few-shot

learners. In North American Chapter of the Association for Computational Linguistics, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.

Cambridge university press, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Neural

Information Processing Systems 30. 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and

Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In

Empirical Methods in Natural Language Processing, 2013.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. oLMpics–on what language model

pre-training captures. Transactions of the Association for Computational Linguistics, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European Conference on

Computer Vision, 2020a.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What makes for

good views for contrastive learning? In Neural Information Processing Systems, 2020b.

Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning with

dual deep networks. arXiv preprint arXiv:2010.00578, 2020c.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,

Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. MLP-Mixer: An all-mlp architecture

for vision. Neural Information Processing Systems, 2021.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive learning, multi-view redundancy,

and linear models. 2021a.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive estimation reveals topic posterior

information to linear models. Journal of Machine Learning Research, 2021b.

229

Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Demystifying self-

supervised learning: An information-theoretical framework. arXiv preprint arXiv:2006.05576, 2020.

Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Self-supervised learning

from a multi-view perspective. In International Conference on Learning Representations, 2021.

Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual informa-

tion maximization for representation learning. In International Conference on Learning Representations,

2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz Kaiser,

and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems, 2017.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 2011.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing

robust features with denoising autoencoders. In International Conference on Machine Learning, 2008.

Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve,

and Francesco Locatello. Self-supervised learning with data augmentations provably isolates content from

style. In Neural Information Processing Systems, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A multi-

task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461,

2018.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and

uniformity on the hypersphere. In International Conference on Machine Learning, 2020.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In IEEE

International Conference on Computer Vision, 2015.

Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A new

understanding of contrastive learning. In International Conference on Learning Representations, 2022.

Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning and using the arrow of

time. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

230

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised contrastive

learning. In International Conference on Machine Learning, 2021.

Theresa Wilson and Janyce Wiebe. Annotating opinions in the world press. In SIGdial Workshop of Discourse

and Dialogue, 2003.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric

Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-

the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Sen Wu, Hongyang Zhang, and Christopher Ré. Understanding and improving information transfer in

multi-task learning. In International Conference on Learning Representations, 2020a.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric

instance discrimination. In IEEE conference on computer vision and pattern recognition, 2018.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma. CLEAR: Contrastive learning

for sentence representation. arXiv preprint arXiv:2012.15466, 2020b.

Wei Xu and Alex Rudnicky. Can artificial neural networks learn language models? In International Conference

on Spoken Language Processing, 2000.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu, and Weiran Xu. ConSERT: A contrastive

framework for self-supervised sentence representation transfer. In Association for Computational Linguistics,

2021.

Han Yang, Xiao Yan, Xinyan Dai, Yongqiang Chen, and James Cheng. Self-enhanced gnn: Improving graph

neural networks using model outputs. In International Joint Conference on Neural Networks, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. XLNet:

Generalized autoregressive pretraining for language understanding. In Neural Information Processing

Systems, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep

learning requires rethinking generalization. In International Conference on Learning Representations,

2017a.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European conference on

computer vision, 2016.

231

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised learning by

cross-channel prediction. In IEEE Conference on Computer Vision and Pattern Recognition, 2017b.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.

In Neural Information Processing Systems. 2015.

Zaiwei Zhang, Zhenxiao Liang, Lemeng Wu, Xiaowei Zhou, and Qixing Huang. Path-invariant map networks.

In IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel. Contrastive

learning inverts the data generating process. In International Conference on Machine Learning, 2021.

232

	Abstract
	Acknowledgements
	Introduction
	Overarching theoretical formalization
	Representation learning
	Downstream classification task
	Self-supervised learning task
	Assumptions and guarantees

	Overview of contributions
	Contrastive learning
	Self-prediction methods
	Language modeling

	Previously published work

	I Contrastive Learning
	A Theoretical Analysis of Contrastive Unsupervised Representation Learning
	Introduction
	Framework for contrastive learning
	Overview of analysis and results
	Guaranteed average binary classification
	Upper bound using unsupervised loss
	Price of negative sampling: class collision

	Towards competitive guarantees
	Limitations of contrastive learning
	Competitive bound via intraclass concentration

	Multiple negative samples and block similarity
	Guarantees for k negative samples
	Effect of excessive negative sampling
	Blocks of similar points

	Related work
	Experimental results
	Controlled experiments
	Effect of block size

	Conclusion
	Deferred proofs
	Class collision lemma
	Proof of curl:lemma:subgaussian
	Generalization bound
	Proof of curl:prop:blocks

	Results for k negative samples
	Formal theorem statement and proof
	Competitive bound

	Examples for curl:subsec:k-wayeffect
	Experiment details
	Wiki-3029 construction
	GRU model

	Understanding Contrastive Learning Requires Incorporating Inductive Biases
	Introduction
	Related work

	Preliminaries
	Warm-up: contrastive learning on hyper28s
	Lower bounds and improved analysis
	Lower bound for disjoint augmentations
	Prior theoretical results and failure modes
	Function class dependent transfer guarantees

	Experiments
	CIFAR-10 + SimCLR experiments
	Are we in the disjoint augmentation regime?
	Experiments on text domain

	Conclusion
	Omitted Proofs
	Proof of ib:prop:hypercuberesults

	Proof for linear representation upper bound
	Matrix notation
	Connecting losses to matrix notations
	Proof of main result
	Discussion of upper bound

	Proofs for lower bounds for (approximately) disjoint augmentations
	Approximately disjoint augmentations

	Experiment details
	Synthetic experiments: hypercube example
	CIFAR-10 + SimCLR experiments
	Experiments on text domain

	II Self-Prediction Methods
	Predicting What You Already Know Helps: Provable Self-Supervised Learning
	Introduction
	Related work
	Overview of results:

	Preliminary
	Notation
	Setup and methodology

	Guaranteed recovery with conditional independence
	Universal function class.
	Function class induced by feature maps.

	Beyond conditional independence
	Example: topic modeling
	Conditional distribution decomposition: SimSiam, CCA, ACE
	Theoretical guarantees for non-linear CCA
	Connection to ACE algorithm and maximal correlation

	Experiments
	Conclusion
	Some useful facts
	Relation of inverse covariance matrix and partial correlation
	Relation to conditional independence
	Technical facts for matrix concentration

	Warm-up: jointly Gaussian variables
	Omitted proofs with conditional independence
	Omitted proof for general random variables
	Omitted proof of linear model with approximation error
	Argument on denoising auto-encoder or context encoder

	Omitted Proofs Beyond Conditional Independence
	Warm-up: Jointly Gaussian Variables
	Measuring conditional dependence with cross-covariance operator
	Omitted Proof in General Setting
	Omitted Proof for Main Results
	Principal Component Regression
	Proof for topic modeling example

	Omitted proofs on learning the conditional distribution
	Introducing the operators on the Hilbert spaces
	Proof of recon:thm:PCRgeneral

	General results and comparison to multi-view redundancy
	General results
	Multi-view redundancy
	Showing E[Y|X1]E[Y|X1,X2]

	Theoretical analysis for classification tasks
	Classification tasks

	Four different ways to use CI
	Inverse covariance matrix
	Closed form of linear conditional expectation
	From law of iterated expectation
	From E[X2|X1,Y]=E[X2|Y]

	Experiment details

	III Language Modeling
	A Mathematical Exploration of Why Language Models Help Solve Downstream Tasks
	Introduction
	Related work

	Language modeling and optimal solutions
	Language modeling using cross-entropy
	Softmax parametrized language modeling

	Using language models for classification tasks
	Sentence completion reformulation
	Natural classification tasks

	Guarantees for language models on natural tasks
	Arbitary language models
	Softmax language model with conditional mean features
	pf(s) is a linear function of f(s)

	Extensions
	Better handling of distributional shift
	Quad: A new objective function

	Experiments
	Conclusions and future work
	Overview
	More on better handling of distributional shift
	More on Quad
	More on natural tasks
	Sentence completion reformulation natural task
	Nice properties of word embeddings
	Proofs for lm:asubsec:sentcompletionnaturaltask

	Omitted proofs
	Proof sketch
	Proofs for arbitrary language models
	Proofs for softmax language models
	Proofs for lm:subsec:linear
	Proofs for lm:asec:quad
	Proofs for supporting lemmas

	Experiment details
	Solving downstream tasks using f and pf
	Finetuning experiments
	Testing Quad objective
	Learning the quadratic approximation of the log-partition function
	Experimentally checking lm:thm:robustsoftmaxlm

