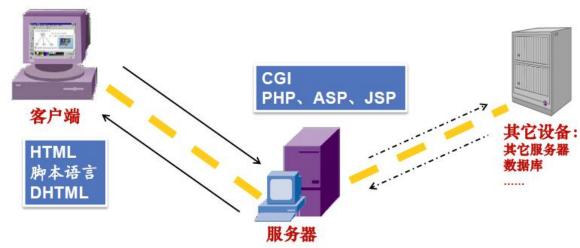
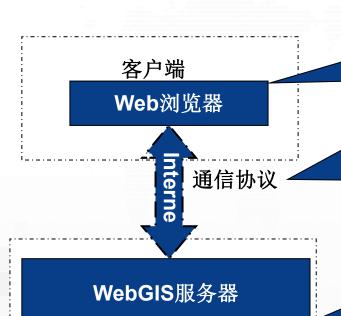


第四章 Web GIS基本技术原理


- 4.1 Web GIS的实现方式
- 4.2 Web GIS空间数据组织
- 4.3 复习与思考

第四章 Web GIS基本技术原理


- 4.1 Web GIS的实现方式
 - WebGIS系统的组成与分类
 - 实现Web GIS的基本方式
- 4.2 Web GIS空间数据组织
- 4.3 复习与思考

Web技术浅析

Web是一种典型的分布式应用架构,每一次信息交换都要涉及到客户端和服务端两个层面,于是Web技术大体上也可以被分为客户端技术和服务端技术两大类

4.1.1 WebGIS的组成

客户端通过浏览器获取分布在 Internet上的各种地理信息

通过相关协议,设定浏览器与服务器之间的通信方式以及数据访问接口,是地理信息在Internet上发布的关键技术

根据用户请求操作GIS数据库, 为用户提供地理信息服务,实 现客户端与服务器的交互

图3.1 WebGIS的组成

服务器端

4.1.2 WebGIS系统的分类

表3.1 WebGIS系统的分类

WEBGIS 类型	GIS分析操作 等任务在服务 器上完成	GIS分析操作 等任务在客 户机上完成	实现方式 (构造模式)	实例
基于服务器	是	否	CGI, Server API, Java Servlet	美国Esri公司的 ArcGIS Server, MapInfo公司的 MapXtreme等
基于 客户机	否	是	GIS Plug-in, GIS ActiveX, GIS Java Applet	Autodesk公司的 MapGuide, 美国InterGragh公司 GeoMedia Web Map, GeoBeans等

4.2 实现Web GIS的基本方式

4.2.1 服务器端模式

- 基于服务器的WebGIS依赖服务器上的GIS系统完成GIS分析和产生输出工作。
 - □ 用户在客户机端Web浏览器上初始化URL请求
 - □ 此请求通过互联网送给服务器。
 - □ 服务器接受此请求,处理请求,并将处理结果返回客户端。

CGI、Java Servlet、Server API

一、 基于CGI方式

通用网关接口 (Common Gateway Interface, CGI) 是一个用于Web服务器和客户端浏览器之间的 特定标准,它允许网页用户通过网页的命令来启动一 个存在于网页服务器主机的程序(称为CGI程序), 并且接收到这个程序的输出结果。CGI是最早实现动 态网页的技术,它使用户可以通过浏览器进行交互操 作,并得到相应的操作结果。

一、基于CGI方式

- CGI(Common Gateway Interface)是HTTP服务器与客户机(一般指浏览器)上的程序进行"交谈"的一种工具。
- 在物理上,CGI是一段程序,它运行在服务器上,提供同客户端 HTML页面的接口。
- 它使网页"动"起来。

一、基于CGI方式

从理论上讲,任何一个GIS软件都可以通过CGI 连接到Web上去,远程用户通过浏览器发出请求,服 务器将请求传递给后端的GIS软件,GIS软件按照要 求产生一幅数字图像,传回远程用户。

例子1

- **■**网页上的数学计算。
- 流程如下: 先由用户在客户端输入两个数字。接着用户按一下"确定"(到目前为止工作都在客户端),浏览器把这些信息传送到服务器的CGI目录下特定的cgi程序中,于是cgi程序在服务器上按照预定的方法进行处理。
- 在本例中就是把用户提交的信息存入指定的文件中。然后cgi 程序给客户端发送一个信息,表示请求的任务已经结束。此 时用户在浏览器里将看到计算结果。整个过程结束。

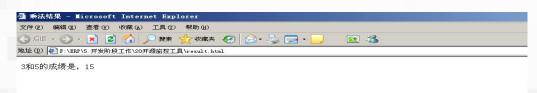
用户在浏览器输入两个数字,CGI程序根据用户输入的数值自动完成乘法运算并返回到界面的过程。

```
<html>
<head>
  <title>
      CGI程序调用
                                         指定的CGI程序
   </title>
</head>
<body>
   <FORM ACTION="/cqi-bin/mult.cqi"</pre>
                                  按下确定后可以看到结果。
     <INPUT NAME="m" SIZE="5"</pre>
     <INPUT NAME="n" SIZE="5" >
     <RR>
    <INPUT TYPE="SUBMIT" VALUE="确定" >
</FOR >
</body>
</html>
```

演示 CGI程序

```
#include < stdio.h >
#include < stdlib.h >
int main(void)
char *data;
long m,n;
printf("%s%c%c ","Content-Type:text/html;charset=qb2312",13,10);
printf("< TITLE >乘法结果< /TITLE > ");
printf("< H3 >乘法结果< /H3 > ");
data = getenv("QUERY STRING");
if(data == NULL)
printf("< P >错误! 数据没有被输入或者数据传输有问题");
else if(sscanf(data,"m=%ld&n=%ld",&m,&n)!=2)
printf("< P >错误! 输入数据非法。表单中输入的必须是数字。");
e1se
printf("< P >%1d和%1d的成绩是: %1d。",m,n,m*n);
return 0:
```

CGI程序使用环境变量getenv获取浏览器传递过来的参数,然后对参数进行参数校验,最后通过标准输出语句printf通过web服务器传递到浏览器


演示 CGI向浏览器输入的结果

CGI执行完生成如下的脚:

Content-Type:text/html;charset=gb2312 <title> 乘法结果 <title> 3和5的成绩是, 15

执行结果:

用户在浏览器点击确定后,CGI程序执行完相应代码并生成html语言的脚本经由web服务器传递到客户浏览器,其效果如下图:

基于CGI方式的工作原理

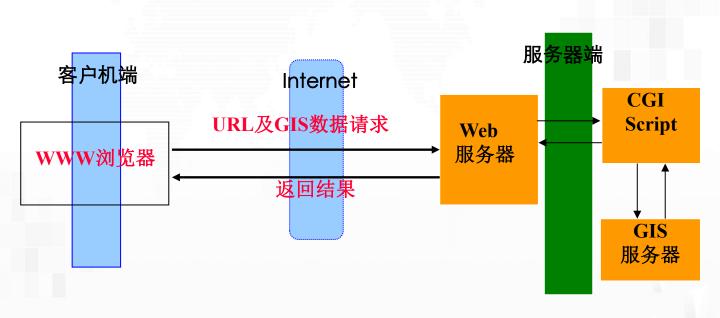
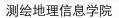



图3.2 CGI 方式工作原理

基于CGI方式的工作原理

- Web浏览器用户发出URL及GIS数据操作请求;
- Web服务器接受请求,并通过CGI脚本,将用户的请求传送给GIS服务器;
- GIS服务器接受请求,进行GIS数据处理如放大、 缩小、漫游、查询、分析等,将操作结果形成 GIF或JPEG图像;
- 最后GIS服务器将GIF或JPEG图像,通过CGI脚本、 Web服务器返回给Web浏览器显示。

基于CGI方式的WebGIS特点

优点:

- (1). "瘦"客户端,即不需要在客户端安装任何软件,在客户端使用的是支持标准HTML的Web浏览器,操作结果以静态的GIF或JPEG图像的形式表现,客户端与平台无关。
- (2). CGI方式被多种操作系统的Web服务器支持,因此, CGI模式在服务器端具有跨平台的能力。

基于CGI方式的WebGIS特点

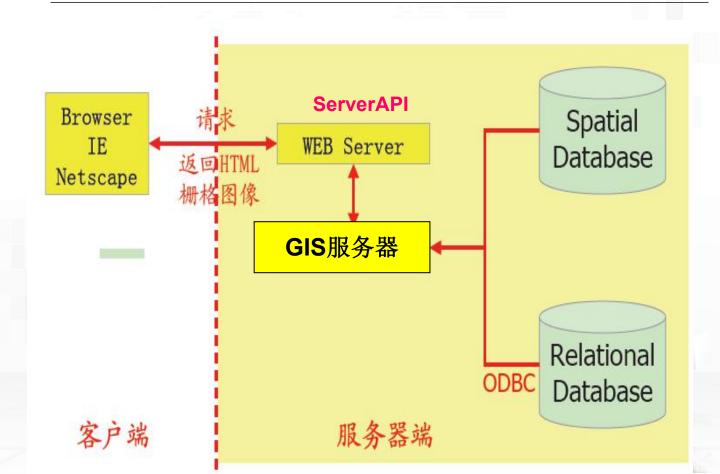
缺点:

- (1). 增加了网络传输的负担。用户的每一步操作,都需要将请求通过网络传送给GIS服务器; GIS服务器将操作结果形成图像,通过网络返回给用户。因而网络的传输量大大增加了。
- (2). 服务器的负担重。所有的操作都必须由GIS服务器解释执行,因而服务器的负担加重。

基于CGI方式的WebGIS特点

- ■(3). 同步请求问题多。由于CGI脚本处理所有来自Web 浏览器的输入和解释GIS服务器的所有输出。当有多用户 同时发出请求时,系统的功能将受到影响。
- (4). 静态图像,在浏览器上显示的静态图像,用户既不能直接在客户端进行放大、缩小操作,又不能通过几何图形如点、线、面来选择显示其关心的地物。
- (5). 用户界面的功能受Web浏览器的限制,影响GIS资源的有效使用。

基于CGI方式的WebGIS产品


基于CGI模式的比较典型的Web GIS 产品有:

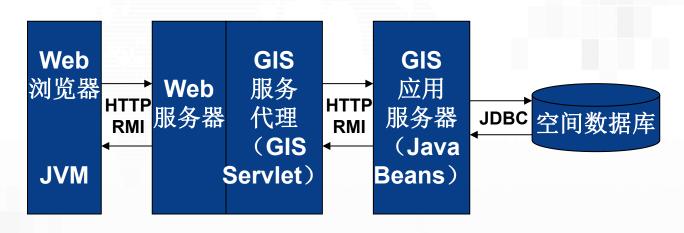
- 美国ESRI公司的ArcView IMS3.0
- MapObjects IMS2.0
- Yahoo Map
- ProServer等。

基于Server API方式

- Server API 方式是为了克服CGI方式的低效率问题而研制的,基本原理类似于CGI,不同之处在于:
- •(1).CGI程序是单独可以运行的程序,而Server API往往依附于特定的Web服务器,如Microsoft ISAPI依附于IIS,只能在Windows平台上运行,其可移植性较差。
- (2). CGI的应用程序一般都是可执行程序,但每次都要重新启动;而基于Server API的动态连接模块启动后会一直处于运行状态,而不像CGI 那样每次都要重新启动。其底度较CGI快得多。

基于Server API方式的WebGIS工作原理

基于Server API方式的WebGIS特点


以CGI脚本连接Web服务器和GIS服务器,对每一个客户端的请求都要重新启动一个新的服务进程,系统响应时间必然受到影响,当有多个客户端同时发出请求时,服务器性能会急剧下降。

•Server API方式克服了以上的缺点,但是Server API依附于特定的Web服务器,可移植性差。

基于Java Servlet方式

- Servlet是Java语言在Web服务器端的一种应用技术,它独立于平台和协议的服务器端的Java应用程序,可生成动态的Web页面。
- Java Servlet是在Java型的Web服务器中执行,并来扩展服务器的功能。

基于Java Servlet方式

基于Java的网络GIS服务器结构

基于Java Servlet方式WebGIS特点

- ■Servlet程序采用线程方式为用户提供服务,多线程 机制能同时为多个请求服务。
- ■Servlet可以在Web服务器启动时自动载入,也可以 在收到请求后再载入,载入后可继续等待其他用户请 求。
- ■Servlet产生的数据可以是矢量数据和栅格数据,矢量数据由客户端Applet来实现显示,栅格数据可以直接由浏览器进行显示。

总结: 服务器端模式的WebGIS特点

- 基于这种模式的WebGIS系统,客户端只负责发送请求和显示结果图像,因此对浏览器的要求很低,兼容性很好,实现比较容易。
- 服务器需要对客户端的任何一个操作做出响应,服务器的负担很重,在客户端数量较多时,服务器的响应速度势必下降。
- 以图像的方式发布空间数据,无疑会增加网络的流通量,降低系统的工作效率。

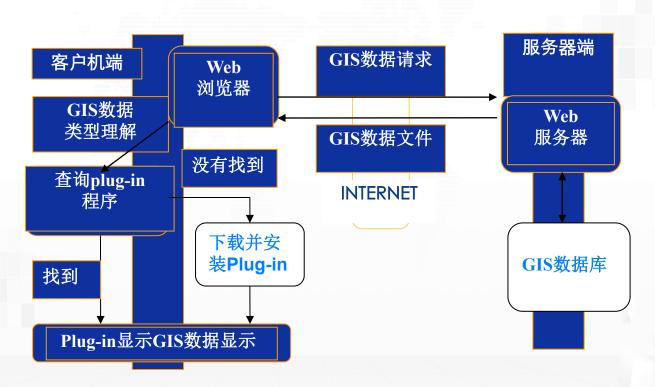
总结: 服务器端模式的WebGIS特点

利用CGI或者Server API,虽然增强了客户端的 交互性,但是用户得到的信息依然是静态的。用户不 能操作单个地理实体以及快速缩放地图,因为在客户 端,整个地图是一个实体,任何GIS操作,如放大、 缩小、漫游等操作都需要服务器完成并将结果返回。 当网络流量较高时,系统反应变慢。

插件技术

4.2.2 客户端模式的WebGIS

- 客户端模式将GIS分析和数据处理放到客户端上
- 服务器只是向客户端提供GIS分析工具和空间数据 当客户端首次向服务器提出请求时,服务器将客户端所需GIS分析工具和空间数据传给客户端,用户即可在客户端完成各种分析和数据处理工作,而不需要服务器的参与。
- 由于数据与工具都在客户端,因此客户端的操作十分 方便、灵活,而且速度很快。



- 插件法(GIS Plug-in)
- GIS ActiveX
- GIS Java Applet

一、基于Plug-in 方式

- Plug-in是由NetScape提出的标准,是一种接入浏览器程序的动态链接库(DLL),它采用了DLL方式,可以很好地解决与浏览器程序间的相互调用问题。
- Plug-in作为网络能力的一种扩展,将大部分负荷加在浏览器程序上,这样就能正确地浏览很多数据类型,在浏览器端完成矢量信息的显示。

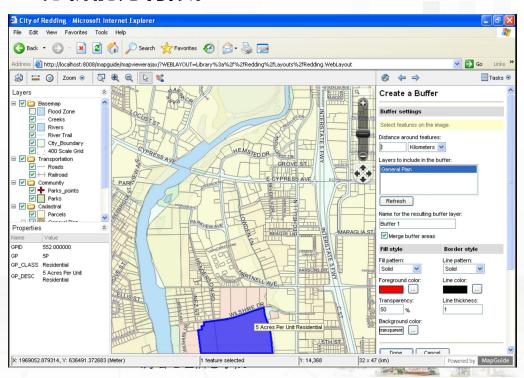
1.2、基于Plug-in 方式的工作原理

基于Plug-in模式的Web GIS体系结构

1.2、基于Plug-in 方式的工作原理

优点:

- (1). 无缝支持与GIS数据的连接。由于对每一种数据源,都需要有相应的GIS Plug in;因而GIS Plug in能无缝支持与GIS数据的连接。
- (2). GIS操作速度快。所有的GIS操作都是在本地由GIS Plug in完成,因此运行的速度快。
- (3). 服务器和网络传输的负担轻。服务器仅需提供GIS数据服务,网络只需将GIS数据一次性传输。服务器的任务很少,网络传输的负担轻。


缺点:

- ■(1). GIS Plug-in与平台相关。对同一GIS数据,不同的操作 系统需要不同的GIS Plug-in。如UNIX,Windows, Macintosh而言,需要有各自的GIS Plug-in在其上使用。对 于不同的Web浏览器,同样需要用相对应的GIS Plug-in。
- ■(2). GIS Plug-in与GIS数据类型相关。对GIS用户而言,使 用的GIS数据类型是多种多样的,如ArcInfo,MapInfo等GIS 数据格式。对于不同的GIS数据类型,需要有相应的GIS Plug-in来支持。

- ■(3). 需要事先安装。用户如想使用,必须下载安装GIS Plug-in程序。如果用户准备使用多种GIS数据类型,必须安装多个GIS Plug-in程序。 GIS Plug-in程序在客户机上的数量增多,势必对管理带来压力。同时GIS Plug-in程序占有客户机磁盘空间。
- ■(4). 更新困难。当GIS Plug-in程序提供者已经将GIS Plug-in升级了,须通告用户进行软件升级。升级时,需要重新下载安装。

■(5). Plug-in方式使用已有的GIS操作分析资源的能力弱, 处理大型的GIS分析能力有限。

AutoDesk公司 的MapGuide。

Plug-in插件技术示例

Plug-in插件技术的网络GIS软件代表是Autodesk公司的MapGuide Viewer插件 (Netscape Plug-in)
 版本

<embed SRC="....."
BORDER="0"
WIDTH="100%",HEIGHT="100%"
NAME="map"
TYPE="application/x-mwf">

- 通过<embed>标签将对象嵌入HTML网页中
- TYPE参数告知浏览器此对象的MIME类型

二、基于ActiveX方式

ActiveX是Microsoft为适应互联网而发展的标准,
 ActiveX控件和Plug-in非常相似,是为扩展Microsoft
 Web浏览器Internet Explorer的功能而提供的公共框架。

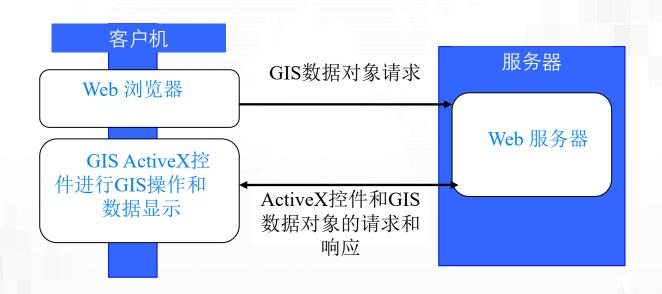
二、基于ActiveX方式

- ActiveX技术是在微软公司OLE (对象连接嵌入) 技术基础上发展起来的技术, 其技术基础是DCOM。
- 它不是计算机语言,而是一个技术标准,是为扩展IE浏览器功能而提出的公共框架。
- 技术体系包括了ActiveX EXE, ActiveX DLL以及 ActiveX控件和ActiveX文档等。

二、基于ActiveX方式

所不同的是, ActiveX能被支持OLE标准的任何程序语言或应用系统所使用。IE浏览器可以作为容器, 任何符合 ActiveX标准的控件都可以嵌入到网页中, 在浏览器中显示。

相反, Plug-in只能在某一具体的浏览器中使用。


在网上第一次浏览含有ActiveX控件的网页时,浏览器会自动下载该控件,在本机安装;以后浏览含有该控件的网页时,就不用下载了。

2.2、基于ActiveX方式WebGIS工作原理

工作原理: Web浏览器发出GIS数据显示请求; Web服务器接受到用户的请求,进行处理,并将用户所要的GIS数据和GIS ActiveX控件(第一次)传送给Web浏览器; GIS ActiveX控件负责向Web服务器请求数据,并对GIS数据进行处理,完成GIS操作。

2.2、基于ActiveX方式WebGIS工作原理

基于GIS ActiveX方式的Web GIS体系结构

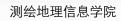
2.3、基于ActiveX方式WebGIS特点

优点:

- (1) 具有GIS Plug-in模式的所有优点。
- (2) 同时,ActiveX能被支持OLE标准的任何程序语言或应用系统所使用,比GIS Plug-in模式更灵活,使用方便。

2.3、基于ActiveX方式WebGIS特点

缺点:


- ■(1).需要下载。占用客户端机器的磁盘空间。
- ■(2).与平台相关。对不同的平台,必须提供不同的GIS ActiveX控件。
- ■(3).与浏览器相关。GIS ActiveX 控件最初只适用于 Microsoft Web浏览器。在其他浏览器使用时,须增加特殊的Pulg-in予以支持。

2.3、基于ActiveX方式WebGIS特点

- ■(4). 使用已有的GIS操作分析资源的能力弱, 外理大型 的GIS分析能力有限。
- ■(5). 存在信息安全隐患。ActiveX具有访问客户端本地文 件系统的能力,使得ActiveX可以具有强大的功能,但存 在信息安全隐患。

基于GIS ActiveX控件的Web GIS产品主要有:

- ✓Intergraph公司的GeoMedia WebMap、
- ✓ ESRI的MapObject Internet Map Server 、
- ✓ MapIfo的MapXtreme。

客户端GIS ActiveX控件技术

- ■需要下载GIS ActiveX控件到客户端的Web浏览器中显示 GIS数据
- ■可以用VBScript或JavaScript操作ActiveX控件
- ■采用<OBJECT>标识ActiveX控件

基于ActiveX控件的网络GIS示例

- MapGuide Viewer ActiveX控件版本
- 要求Web浏览器为IE

http://www.mgdn.com.ar

三、基于Java Applet方式

WebGIS插件可以和浏览器一起有效地处理空间数据,但是其明显的不足之处在于计算集中于客户端,称为"胖客户端",而对于CGI方法以及Server API方法,数据处理在服务器端进行,形成"瘦客户端"。

3.1. Java Applet

■ Applet是小型的Java应用程序,是专门为建立动态 Web网页而设计的。Applet每次随网页一起被加载到客户端,然后,浏览器调用Java虚拟机执行Applet程序。

3.1、 Java Applet

Applet 仅仅是被加载到客户端的内存中,用户退出 Applet页面,Applet就被收回,Applet虽然是"胖客户"端, 但不占用客户端磁盘空间。

由于Java虚拟机对Applet做了限制,使得Applet不能访问本地文件系统,保证了系统安全,但限制了Applet的一些功能。

3.2 基于Java Applet方式的Web GIS工作原理

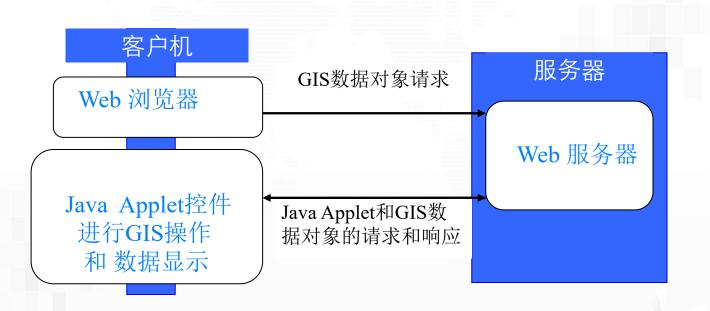


图3.4 基于GIS Java Applet模式的Web GIS体系结构

3.2 基于Java Applet方式的Web GIS工作原理

- (1) 通过单击超链接的URL, 浏览器客户向服务器 发送请求;
- (2) Web服务器接受请求,加载HTML文档;
- (3) 浏览器解释HTML文档,并检测到<APPLET> 标识符;
- (4) 从服务器下载GIS Applet类文件;
- (5)检测被该GIS Applet引用的其他Applet类文件 和数据文件并下载;
- (6) GIS Applet在浏览器中或自己的窗口中显示;
- (7) GIS Applet解释和操作GIS数据。

3.2 基于Java Applet方式的Web GIS工作原理

GIS Java Applet在运行过程中,又可以向Web服务器 发出数据服务请求; Web 服务器端接受请求并将进行处理 所要的GIS数据对象传送给GIS Java Applet。

优点:

- (1). 体系结构中立,与平台和操作系统无关。在具有 Java虚拟机的Web浏览器上运行。写一次,可到处运行。
- (2). 动态运行,无须在用户端预先安装。由于GIS Java Applet是在运行时从Web服务器动态下载的,所以当服务器端的GIS Java Applet更新后,客户机端总是可以使用最新的版本。

3.3 基于Java Applet方式的Web GIS的特点

- ■(3). GIS操作速度快。所有的GIS操作都是在本地由GIS Java Applet完成,因此运行的速度较快。
- ■(4). 服务器和网络传输的负担轻。服务器仅需提供GIS数据服务,网络也只需将GIS数据一次性传输。服务器的负担很小,网络传输的负担轻。

3.3 基于Java Applet方式的Web GIS的特点

- (5) GIS Applet根据用户的请求自动从服务器下载并安装运行,当用户退出应用时又自动卸载,因此它不会像插件和控件一样永久占用客户计算机的硬盘空间。
- (6) Java Applet具有很高的安全性,它运行于客户端计算机的JVM上,无法访问本地系统资源,从而不会破环或窃取本地客户的信息,也不会使客户计算机感染病毒。

3.3 基于Java Applet方式的Web GIS的特点

缺点:

- (1). 使用已有的GIS操作分析资源的能力弱,处理大型的GIS分析能力有限。运行效率比ActiveX低。
- (2). GIS Applet的缺点就是由于安全限制的原因不能把GIS数据和分析结果保存在客户端计算机上,而且只能和下载它的服务器连接,而不连接网络上的其他计算机,这就阻碍了WebGIS所要求的真正意义上的分布处理。

InternetGIS.com 、ActiveMaps、Intenet GeoStar

总结: 几种WebGIS实现方式优劣

■ 基于Plug-in、ActiveX Control解决方案由于具有 了客户端数据管理功能,可以在无状态的HTTP协议的基础 上实现有状态的WebGIS协议,进而实现网络传输数据量的 优化,解决了WebGIS客户端的"持续性" 要求。 但这种 本地代码的解决方法仍然存在版本冲突和升级的问题。 软 件开发商需要针对不同操作系统平台和不同浏览器推出不 同的版本: 由于系统升级带来的数据格式和协议的改变, WebGIS 客户端需要下载最新的代码模块,不利于WebGIS的 开发和管理。

总结: 几种WebGIS实现方式优劣

■ 基于Java Applet的WebGIS方案解决了平台无关性,减轻服务器和网络传输的负担,但其存在:GIS数据的保存、分析结果的存储和网络资源的使用能力有限,处理较大的GIS分析任务的能力有限等问题。

总结: 几种WebGIS实现方式优劣

客户端模式虽然克服了服务器端模式中服务器 负担过重的问题,但只是简单地将服务器的负担转移 到客户端。由于GIS 工具只能在浏览器内处理空间 数据,进行复杂空间分析的能力无疑会受到限制,而 目,将空间数据全部下载到客户端,只适合于少量空 间数据的场合,对于海量空间数据,客户端模式则很 难满足要求。因此,客户端模式只适合少量空间数据 和简单空间分析的应用。

WebGIS要真正得到广泛的企业级应用,必须解决如何有效地平衡客户端与服务器的负担问题。

3.2.3 几种实现方式的比较

■ WebGIS的构造模式: CGI方式、Server API、Plug-in方式、GIS ActiveX控件方式、GIS Java Applet方式,在执行能力、相互作用、可移植性和安全性等方面表现出各自的特征。

3.2.3 几种实现方式的比较

表3.2 WebGIS的不同构造模式的评价

		基于CGI	Server API	基于 Plug-in	基于 ActiveX控 件	基于 Java Applet
执行	客户机	很好	很好	好	好	好
能力	服务器	差到好	好	好	很好	很好
	网络	差	好	好	好	好
	总体	一般	好	好	好到很好	好到很好
相互作用	用户界面	差	好	好	很好	很好
	功能支持	一般	好	好	很好	很好
	本地数据支持	否	否	是	是	否
可移植性		很好	很好	差	一般	好
安全		很好	很好	一般	一般	好

3.2.3 几种实现方式的比较

技术类型	优点	缺陷
CGI	客户端小;处理大型GIS操作分析的功能强;充分利用服务器现有资源。	网络传输和服务器的负担重;同步多 请求问题;作为静态图像,JPEG和GIF 是客户端操作的唯一形式。
Server API	不像CGI那样每次都要重新启动,其 速度较CGI快得多。	需要依附于特定的Web服务器和计算机 平台。
Plug-in	服务器和网络传输的负担轻;可直接操作GIS数据,速度快。	需要先下载安装到客户机上;与平台和操作系统相关;对于不同的GIS数据类型,需要有相应的GIS Plug-in来支持
ActiveX Control	执行速度快; 具有动态可重用代码模块。	与操作系统相关;需要下载、安装, 占用存储空间;安全性较差;对不同 的GIS数据类型,需相应的GIS ActiveX控件支持。
Java Applet	与平台和操作系统无关;实时下载运行,无需预先安装;GIS操作速度快;服务器和网络传输的负担轻。	GIS数据的保存、分析结果的存储和网络资源的使用能力有限;处理较大的GIS分析任务的能力有限。

CGI和Server API这两种解决方案不合适用户信息查询和空间分析的基本要求:

- □ 一方面在这两种技术框架下,客户端并不具有空间数据管理模块。
- □ 另一方面,这种解决方案又给服务器端和网络传输工作带来了沉重的负担。

通过分析比较可以看出:

基于服务器的和基于客户端的WebGIS模型都存在一端重一端轻的问题。基于服务器的WebGIS模型服务器和网络负担重,难以胜任大量客户的并发访问;而基于客户端的WebGIS模型则客户端相对任务多,存在平台和操作系统不一致问题,以及版本冲突和升级的问题,系统安全性等问题。

总结

- 如何平衡客户端和服务器端的负担,减少网络传输的负担,提高WebGIS效率,而且又能处理较大的GIS分析任务,是WebGIS一个值得研究的问题。
- WebGIS客户端用户可能是多种多样的。有的客户可能只想尽快得到一幅栅格地图;而有的用户可能需要高级的GIS分析功能;有的用户可能希望系统提供矢量数据流服务。如何使所设计的WebGIS系统为不同级别的客户服务也是一个值得考虑的问题。

第三章 Web GIS基本技术原理

- 3.1 Web GIS的实现方式
- 3.2 Web GIS空间数据组织
 - Web GIS 空间数据特点
 - WebGIS 地理信息空间数据服务流程
 - 基于GML的异构WebGIS空间数据组织
- 3.3 复习与思考

■ 3.2.1 Web GIS 空间数据特点

基于WebGIS的地理信息具有分布式、多源、异构、 异质和特定用户显示界面的特点:

- 1、地理信息本身具有地域分布特征
- 2、地理信息存储方式不同,表现出异质特点
- 3、中间件应用服务平台不同
- 4、Web GIS的客户端不同,支持的地理信息格式不同

3.2.2 Web GIS 空间数据服务流程

- 1、 服务消费者想分布式地理信息服务提供商发出特定知识请求
- 2、 分布式地理信息服务提供商处理数据请求,把请求分类,把数据请求转发给数据提供商
- 3、 数据提供商处理数据请求,把数据发送给分布式地理信息服务提供商
- 4、 分布式地理信息服务提供商对数据根据用户的请求进行处理后,形成知识相应给服务消费者
- 5、 服务消费者根据响应做进一步的处理

数据:数据提供 商 E00数据 MapInfo数据 交通数据 气象数据

分布 信息: GIS Web服式地 务提供商 理数 据访 分布式空间数据

分布式空间数据 组织与处理 知识:服务消费 者

转化

成消

费者

能理

解的

知识

我的位置 如何到达 统计信息 专题信息

| 3.2.3 XML概述

- XML (可扩展标识语言)
 - XML是一种元语言
 - XML是一样用来定义其他语言的语法系统
- ◆XML与HTML对比
 - ◆HTML 侧重于如何表现信息
 - ◆XML 侧重于如何结构化描述信息

____ 3.2.3 XML概述

XML VS HTML

比较内容	HTML	XML 是元标记语言,可以定义 新的标记语言,标记由用 户定义	
可扩展性	不具有可扩展性,标记固定		
侧重点	侧重于信息的表现形式, 数据显示为什么格式为 HTML所关注	侧重于结构化的描述信 息,数据是什么为XML所 关注	
语法 不严格(嵌套、配对)		严格要求嵌套、配对严格 按照DTD的要求	
可读、可维护	难于阅读, 难于维护	结构清晰,便于阅读与进 行维护	
数据本身与显示	数据与显示合在一处	数据与显示分离	
可重用	差	可重用性很高	

3.2.3 XML概述

■ XML处理接口

- DOM, 文档对象模型, "随机访问"协议
- SAX。XML简单应用程序接口,"顺序访问" 协议
- IBM XML4J
- Oracle EXPAT

- Sun JAXP/JDOM
- Microsoft MSXML

3.2.3 GML概述

由于XML能针对特定应用定义自己的标记语言, GML(地理标记语言)就是XML在地理信息系统中的应用。

3.2.3 GML概述

设计目的:

- 1、为数据存储和传输提供一种编码空间信息的方式
- 2、以一种渐进的、模块化的方式建立WebGIS的基础
- 3、提供一种易于理解的编码方式。
- 4、实现空间信息与非空间信息的分离
- 5、提供一系列通用的地理模型对象,使独立开发的 应用之间可以互操作。

■ 3.2.3 GML概述

- 要素模式
 - Feature. xsd
- 几何模式

分为 5 个文件模块: geometryBasic0d1d.xsd、 geometryBasic2d.xsd、geometryAggregates.xsd、geometryPrimitives.xsd、geometryComplex.xsd。

- 拓扑模式
 - topology.xsd

3.2.3 GML概述

这些简单的几何要素建模,如图 5.1-1,它显示了点 p1 和 p2 之间两条不同道路 R1 和 R2。点 p1 在 GML 3.0 中的编码如下:

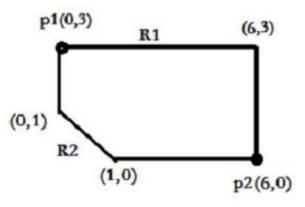
< gml :Point gml : id = "P1" srsName= ".." >

< gml :pos >0 3</ gml :pos>

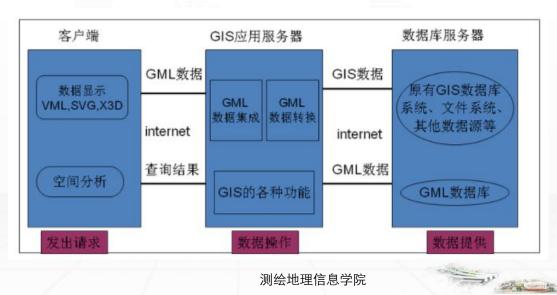
</gml:Point>

下面给出如何将R1和R2作为LineString对象来编码的例子

< gml : LineString gml : id = "R1" srsName=".." >


< gml :coordinates >0,3 6,3 6,0 </ gml :coordinates >

< gml : LineString gml : id = "R2" srsName=".." >


<gml:posList dimension = " 2" >0 3 0 1 1 0 6 0/ gml:coordinates >

</ gml : LineString>

3.2.3 基于GML的异构WebGIS 空间数据组织

Web上海量的数据分散在不同的站点上,以不同的形式存在, 有文件系统、数据库系统等,导致基于传统模式实现查询、检索、 集成数据的应用系统将十分困难

复习思考题

- 1. 基于CGI方式的WebGIS工作原理与特点?
- 2. Java Applet方式实现的WebGIS原理与特点?
- 3. Plug-in方式实现的WebGIS原理与特点?
- 4. WebGIS空间数据特点?